Titelangaben
Etzion, Tuvi ; Kurz, Sascha ; Otal, Kamil ; Özbudak, Ferruh:
Subspace Packing.
2019
Veranstaltung: WCC 2019: The Eleventh International Workshop on Coding and Cryptography
, 31.03.-05.04.2019
, Saint-Jacut-de-la-Mer, France.
(Veranstaltungsbeitrag: Workshop
,
Vortrag
)
Weitere URLs
Abstract
The Grassmannian G_q(n,k) is the set of all k-dimensional subspaces of the vector space GF(q)^n. It is well known that codes in the Grassmannian space can be used for error-correction in random network coding. On the other hand, these codes are q-analogs of codes in the Johnson scheme, i.e. constant dimension codes. These codes of the Grassmannian G_q(n,k) also form a family of q-analogs of block designs and they are called subspace designs. The application of subspace codes has motivated extensive work on the q-analogs of block designs. In this paper, we examine one of the last families of q-analogs of block designs which was not considered before. This family called subspacepackings is the q-analog of packings. This family of designs was considered recently for network coding solution for a family of multicast networks called the generalized combination networks. A subspace pack-ing t-(n,k,λ)_q is a set S of k-subspaces from G_q(n,k) such that each t-subspace of G_q(n,t) is contained in at most λ elements of S. The goal of this work is to consider the largest size of such subspace packings.
Weitere Angaben
Publikationsform: | Veranstaltungsbeitrag (Vortrag) |
---|---|
Begutachteter Beitrag: | Ja |
Zusätzliche Informationen: | speaker: Ferruh Özbudak |
Keywords: | random network coding; subspace codes; packings; designs; q-analogs |
Fachklassifikationen: | Mathematics Subject Classification Code: 51E20 (11T71 94B25) |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wirtschaftsmathematik Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 02 Apr 2019 09:18 |
Letzte Änderung: | 02 Apr 2019 09:18 |
URI: | https://eref.uni-bayreuth.de/id/eprint/48519 |