Titelangaben
Schörner, Christian ; Adhikari, Subhasis ; Lippitz, Markus:
A Single-Crystalline Silver Plasmonic Circuit for Visible Quantum Emitters.
In: Nano Letters.
Bd. 19
(2019)
Heft 5
.
- S. 3238-3243.
ISSN 1530-6992
DOI: https://doi.org/10.1021/acs.nanolett.9b00773
Abstract
Plasmonic waveguides are key elements in nanophotonic devices, serving as optical interconnects between nanoscale light sources and detectors. Multimode operation in plasmonic two-wire transmission lines promises important degrees of freedom for near-field manipulation and information encoding. However, highly confined plasmon propagation along gold nanostructures is typically limited to the near-infrared region due to ohmic losses, excluding all visible quantum emitters from plasmonic circuitry. We report on the top-down fabrication of complex plasmonic nanostructures in single-crystalline silver plates. We demonstrate the controlled remote excitation of a small ensemble of fluorophores by a set of waveguide modes and the emission of the visible luminescence into the waveguide with high efficiency. This approach opens up the study of a nanoscale light–matter interaction between complex plasmonic waveguides and a large variety of quantum emitters available in the visible spectral range.