Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Comparative study of the influence of pulsed and continuous wave laser heating on the mobilization of carbon and its chemical reaction with iron in a diamond anvil cell

Title data

Aprilis, Georgios ; Kantor, I. ; Kupenko, I. ; Cerantola, V. ; Pakhomova, Anna S. ; Collings, I. E. ; Torchio, R. ; Fedotenko, Timofey ; Chariton, Stella ; Bykov, Maxim ; Bykova, Elena ; Koemets, Egor ; Vasiukov, Denis ; McCammon, Catherine ; Dubrovinsky, Leonid ; Dubrovinskaia, Natalia:
Comparative study of the influence of pulsed and continuous wave laser heating on the mobilization of carbon and its chemical reaction with iron in a diamond anvil cell.
In: Journal of Applied Physics. Vol. 125 (2019) Issue 9 . - Art.Nr. 095901.
ISSN 1089-7550
DOI: https://doi.org/10.1063/1.5067268

Project information

Project financing: Deutsche Forschungsgemeinschaft
BMBF

Abstract in another language

Laser heating in a diamond anvil cell (DAC) is a common method for studying material behavior at high-pressure and high-temperature conditions. It has been previously proven that during continuous wave (CW) laser heating of a sample, carbon of the diamond anvils is mobilized, and its diffusion into the sample can lead to undesirable chemical reactions, which, if not detected, may cause misinterpretations of the results of the experiment. Minimizing the heating time with the use of a pulsed laser (PL) is thought to reduce the risk of possible carbon contamination of the sample; however, this has not been proven experimentally. Here, we report the results of our comparative study of the effect of pulsed and continuous wave (CW) laser heating on the mobilization of carbon and its chemical interaction with iron in a diamond anvil cell. Using X-ray absorption near edge structure spectroscopy, Synchrotron Mössbauer Source spectroscopy, and Synchrotron X-ray diffraction, we examined iron samples that were laser heated in DACs in various pressure transmitting media (neon, argon, and potassium chloride). According to our results, the use of the PL heating does not prevent the sample from carbon contamination. A reaction between carbon and iron happens within a few seconds even at moderate temperatures. We found that one analytical technique was generally insufficient to fully characterize the phase composition of the laser-heated samples.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Mathematics, Physics und Computer Science > Group Material Sciences > Professur Materialphysik und Technologie bei extremen Bedingungen
Faculties > Faculty of Mathematics, Physics und Computer Science > Group Material Sciences > Professur Materialphysik und Technologie bei extremen Bedingungen > Professur Materialphysik und Technologie bei extremen Bedingungen - Univ.-Prof. Dr. Natalia Doubrovinckaia
Faculties
Faculties > Faculty of Mathematics, Physics und Computer Science
Faculties > Faculty of Mathematics, Physics und Computer Science > Group Material Sciences
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 530 Physics
Date Deposited: 11 Jul 2019 08:23
Last Modified: 22 Oct 2019 11:57
URI: https://eref.uni-bayreuth.de/id/eprint/49902