Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

The accuracy of laser flash analysis explored by finite element method and numerical fitting

Titelangaben

Philipp, Alexandra ; Eichinger, Jonas F. ; Aydin, Roland C. ; Georgiadis, Argyrios ; Cyron, Christian J. ; Retsch, Markus:
The accuracy of laser flash analysis explored by finite element method and numerical fitting.
In: Heat and Mass Transfer. Bd. 56 (2020) . - S. 811-823.
ISSN 1432-1181
DOI: https://doi.org/10.1007/s00231-019-02742-7

Abstract

Laser flash analysis (LFA) has become over the last decades a widely used standard technique to measure the thermal diffusivity of bulk materials under various conditions like different gases, atmospheric pressures, and temperatures. A curve fitting procedure forms the heart of LFA. This procedure bases on a mathematical model that should ideally account for inherent shortcomings of the experimental realization such as: duration of the heating pulse, heat losses to the environment and sample holder, non-opaque samples, and radiative heat transfer. The accuracy of the mathematical model and curve fitting algorithm underlying LFA defines an upper bound of the accuracy of LFA in general. Unfortunately, not much is known about the range of parameters and conditions for which this accuracy is acceptable. In this paper, we examine the limits of accuracy of LFA resulting from its underlying computational framework. To this end, we developed a particularly accurate and comprehensive computational framework and applied it to data from simulated experiments. We quantify the impact of different (simulated) experimental conditions on the accuracy of the results by comparing the fit results of our computational framework to the known simulation input parameters. This way we demonstrate that a state-of-the-art computational framework for LFA admits determining thermal conductivities of materials in a broad range from at least 0.16 W/mK to 238 W/mK with relative errors typically well below 4% even in the presence of common undesired experimental side effects.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Physikalische Chemie I
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Physikalische Chemie I > Lehrstuhl Physikalische Chemie I - Univ.-Prof. Dr. Markus Retsch
Fakultäten
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie
Eingestellt am: 13 Jan 2020 06:59
Letzte Änderung: 10 Jun 2022 10:42
URI: https://eref.uni-bayreuth.de/id/eprint/53706