Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

A Geometric View of the Service Rates of Codes Problem and its Application to the Service Rate of the First Order Reed-Muller Codes

Titelangaben

Kazemi, Fatemeh ; Kurz, Sascha ; Soljanin, Emina:
A Geometric View of the Service Rates of Codes Problem and its Application to the Service Rate of the First Order Reed-Muller Codes.
In: 2020 IEEE International Symposium on Information Theory : Proceedings. - Piscataway, NJ : IEEE , 2020 . - S. 66-71
ISBN 978-1-7281-6432-8
DOI: https://doi.org/10.1109/ISIT44484.2020.9174345

Abstract

We investigate the problem of characterizing the service rate region of a coded storage system by introducing a novel geometric approach. The service rate is an important performance metric that measures the number of users that can be simultaneously served by the storage system. One of the most significant advantages of our introduced geometric approach over the existing approaches is that it allows one to derive bounds on the service rate of a code without explicitly knowing the list of all possible recovery sets. As an illustration of the power of our geometric approach, we derive upper bounds on the service rate of the first order Reed-Muller codes and the simplex codes. Then, we show how these upper bounds can be achieved. Moreover, utilizing the same geometric technique, we show that given the service rate region of a code, a lower bound on the minimum distance of the code can be obtained.

Weitere Angaben

Publikationsform: Aufsatz in einem Buch
Begutachteter Beitrag: Ja
Keywords: distributed storage; linear codes; service rates of codes; Reef-Muller codes
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wirtschaftsmathematik
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 12 Okt 2020 13:11
Letzte Änderung: 12 Okt 2020 13:11
URI: https://eref.uni-bayreuth.de/id/eprint/58185