Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

The directed and Rubinov subdifferentials of quasidifferentiable functions, Part I : Definition and examples

Titelangaben

Baier, Robert ; Farkhi, Elza ; Roshchina, Vera:
The directed and Rubinov subdifferentials of quasidifferentiable functions, Part I : Definition and examples.
In: Nonlinear Analysis : Theory, Methods & Applications. Bd. 75 (2012) Heft 3 . - S. 1074-1088.
ISSN 0362-546X
DOI: https://doi.org/10.1016/j.na.2011.04.074

Rez.:

Weitere URLs

Abstract

We extend the definition of the directed subdifferential, originally introduced in [R. Baier, E. Farkhi: The directed subdifferential of DC functions, in: A. Leizarowitz, B. S. Mordukhovich, I. Shafrir, A. J. Zaslavski (Eds.), Nonlinear Analysis and Optimization II: Optimization. A Conference in Celebration of Alex Ioffe's 70th and Simeon Reich's 60th Birthdays, June 18-24, 2008, Haifa, Israel, in: AMS Contemp. Mathem. 513, AMS and Bar-Ilan University, 2010, pp. 27-43], for differences of convex functions (DC) to the wider class of quasidifferentiable functions. Such generalization efficiently captures differential properties of a wide class of functions including amenable and lower/upper-Ck functions. While preserving the most important properties of the quasidifferential, such as exact calculus rules, the directed subdifferential lacks the major drawbacks of quasidifferential: non-uniqueness and “inflation in size” of the two convex sets representing the quasidifferential after applying calculus rules. The Rubinov subdifferential is defined as the visualization of the directed subdifferential.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Zusätzliche Informationen: CONTENTS:
1. Introduction
2. Preliminaries
3. Quasidifferentiable functions
3.1 Definition and some basic properties
3.2 Examples
4. Directed sets and the directed subdifferential
4.1 Directed sets
4.2 The directed and Rubinov subdifferentials
5. Directed subdifferential for lower-<i>C<sup>k</sup></i> and amenable functions
6. Conclusions
Keywords: Subdifferentials; Quasidifferentiable functions; Differences of sets; Directed sets; Directed subdifferential; Amenable and lower-,Cᵏ,functions
Fachklassifikationen: Mathematics Subject Classification Code: 49J52 (26B25 90C26)
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) > Lehrstuhl Mathematik V (Angewandte Mathematik) - Univ.-Prof. Dr. Lars Grüne
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik)
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik
Eingestellt am: 22 Feb 2021 11:52
Letzte Änderung: 28 Mai 2021 10:07
URI: https://eref.uni-bayreuth.de/id/eprint/63238