Titelangaben
Baier, Robert ; Donchev, Tzanko:
Discrete Approximation of Impulsive Differential Inclusions.
In: Numerical Functional Analysis and Optimization.
Bd. 31
(2010)
Heft 6
.
- S. 653-678.
ISSN 1532-2467
DOI: https://doi.org/10.1080/01630563.2010.483878
Rez.: |
Weitere URLs
Abstract
The paper deals with the approximation of the solution set and the reachable sets of an impulsive differential inclusion with variable times of impulses. It is strongly connected to T. Donchev, ``Approximation of the Solution Set of Impulsive Systems", Lecture Notes in Comput. Sci. 4818 (2008) and is its continuation. We achieve order of convergence 1 for the Euler approximation under Lipschitz assumptions on the set-valued right-hand side and on the functions describing the jump surfaces and jumps themselves. Another criterion prevents the beating phenomena and generalizes available conditions. Several test examples illustrate the conditions and the practical evaluation of the jump conditions.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Zusätzliche Informationen: | Contents:
1. Preliminaries 2. Approximation of the solution set 3. Approximation of the reachable set |
Keywords: | impulsive differential inclusions; numerical approximation of the solution set and the reachable set; Euler's method; convergence order; evaluation of the jump conditions |
Fachklassifikationen: | Mathematics Subject Classification Code: 34A37 (93B03 34A60 49M25) |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 25 Feb 2021 08:24 |
Letzte Änderung: | 25 Mai 2021 13:16 |
URI: | https://eref.uni-bayreuth.de/id/eprint/63445 |