Titelangaben
Baier, Robert ; Farkhi, Elza ; Roshchina, Vera:
On Computing the Mordukhovich Subdifferential Using Directed Sets in Two Dimensions.
In: Burachik, Regina S. ; Yao, Jen-Chih
(Hrsg.):
Variational Analysis and Generalized Differentiation in Optimization and Control : In Honor of Boris S. Mordukhovich. -
New York
: Springer
,
2010
. - S. 59-93
. - (Springer Optimization and its Applications
; 47
)
ISBN 978-1-4419-0436-2
DOI: https://doi.org/10.1007/978-1-4419-0437-9_3
Rez.: |
Weitere URLs
Abstract
The Mordukhovich subdifferential is highly important in the variational and non-smooth analysis and optimization, but it may often be hard to calculate it. Here we propose a method of computing the Mordukhovich subdifferential of differences of sublinear (DS) functions applying the directed subdifferential of differences of convex (DC) functions. We restrict ourselves to the two-dimensional case mainly for simplicity of the proofs and for the visualizations.
The equivalence of the Mordukhovich symmetric subdifferential (the union of the corresponding subdifferential and superdifferential), to the Rubinov subdifferential (the visualization of the directed subdifferential), is established for DS functions in two dimensions. The Mordukhovich subdifferential and superdifferential are identified as parts of the Rubinov subdifferential. In addition it is possible to construct the directed subdifferential in a way similar to the Mordukhovich one by considering outer limits of Fréchet subdifferentials. The results are extended to the case of DC functions. Examples illustrating the obtained results are presented.
Weitere Angaben
Publikationsform: | Aufsatz in einem Buch |
---|---|
Begutachteter Beitrag: | Ja |
Zusätzliche Informationen: | Contents:
1. Introduction 2. Preliminaries 3. The Mordukhovich and the Directed Subdifferential in |R^2 4. Examples 5. Conclusions |
Keywords: | non-convex subdifferentials and superdifferentials (basic subdifferentials; Rubinov subdifferential); Frêchet subdifferential; difference of convex (DC) functions; differences of sets |
Fachklassifikationen: | Mathematics Subject Classification Code: 49J52 (26B25 49J50 90C26) |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 25 Feb 2021 08:55 |
Letzte Änderung: | 25 Mai 2021 13:30 |
URI: | https://eref.uni-bayreuth.de/id/eprint/63451 |