Titelangaben
Grüne, Lars ; Semmler, Willi:
Using dynamic programming with adaptive grid scheme for optimal control problems in economics.
In: Journal of Economic Dynamics and Control.
Bd. 28
(2004)
Heft 12
.
- S. 2427-2456.
ISSN 1879-1743
DOI: https://doi.org/10.1016/j.jedc.2003.11.002
Weitere URLs
Abstract
The study of the solutions of dynamic models with optimizing agents have often been limited by a lack of available analytical techniques to explicitly find the global solution paths. On the other hand the application of numerical techniques such as dynamic programming (DP) to find the solution in interesting regions of the state state was restricted by the use of fixed grid size techniques. Following Grüne (1997) in this paper an adaptive grid scheme is used for finding the global solutions of discrete time Hamilton-Jacobi-Bellman (HJB) equations. Local error estimates are established and an adapting iteration for the discretization of the state space is developed. The advantage of the use of adaptive grid scheme is demonstrated by computing the solution paths of one and two dimensional economic models which exhibit complicated dynamics due to multiple equilibria, thresholds (Skiba sets) separating domains of attraction and periodic solutions. The studied examples are from economic growth, investment theory, environmental and resource economics.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Keywords: | Dynamic optimization; Dynamic programming; Adaptive grid scheme |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) > Lehrstuhl Mathematik V (Angewandte Mathematik) - Univ.-Prof. Dr. Lars Grüne Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 02 Mär 2021 09:11 |
Letzte Änderung: | 04 Jul 2022 11:25 |
URI: | https://eref.uni-bayreuth.de/id/eprint/63501 |