Titelangaben
Baier, Robert ; Büskens, Christof ; Chahma, Ilyes Aïssa ; Gerdts, Matthias:
Approximation of reachable sets by direct solution methods for optimal control problems.
In: Optimization Methods and Software.
Bd. 22
(2007)
Heft 3
.
- S. 433-452.
ISSN 1029-4937
DOI: https://doi.org/10.1080/10556780600604999
Rez.: |
Weitere URLs
Abstract
A numerical method for the approximation of reachable sets of linear control systems is discussed. The method is based on the formulation of suitable optimal control problems with varying objective function, whose discretization by Runge-Kutta methods leads to finite-dimensional convex optimization problems. It turns out that the order of approximation for the reachable set depends on the particular choice of the Runge-Kutta method in combination with the selection strategy used for control approximation. For an inappropriate combination, the expected order of convergence cannot be achieved in general. The method is illustrated by two test examples using different Runge-Kutta methods and selection strategies, in which the run times are analysed, the order of convergence is estimated numerically and compared with theoretical results in similar areas.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Zusätzliche Informationen: | Contents:
1. Introduction 2. Notation 3. Direct solution method for the approximation of reachable sets 3.1 Connection to OCPs 3.2 Approximation of reachable sets by discretized OCPs 3.3 Discrete reachable sets 3.4 Implementation 4. Examples 5. Outline of further research |
Keywords: | Approximation of reachable sets; Discretization of optimal control problems; Direct solution methods; Set-valued Runge-Kutta methods; Order of convergence; Linear optimal control problems |
Fachklassifikationen: | Mathematics Subject Classification Code: 93B03 (65L06 49J53 49N05 49M25 93B40) |
Institutionen der Universität: | Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 03 Mär 2021 10:52 |
Letzte Änderung: | 19 Mai 2021 05:56 |
URI: | https://eref.uni-bayreuth.de/id/eprint/63622 |