Titelangaben
Baier, Robert ; Farkhi, Elza:
Regularity and Integration of Set-Valued Maps Represented by Generalized Steiner Points.
In: Set-Valued Analysis.
Bd. 15
(2007)
.
- S. 185-207.
ISSN 0927-6947
DOI: https://doi.org/10.1007/s11228-006-0038-0
Rez.: |
Weitere URLs
Abstract
A family of probability measures on the unit ball in |Rn generates a family of generalized Steiner (GS-)points for every convex compact set in |Rn. Such a "rich" family of probability measures determines a representation of a convex compact set by GS-points. In this way, a representation of a set-valued map with convex compact images is constructed by GS-selections (which are defined by the GS-points of its images). The properties of the GS-points allow to represent Minkowski sum, Demyanov difference and Demyanov distance between sets in terms of their GS-points, as well as the Aumann integral of a set-valued map is represented by the integrals of its GS-selections. Regularity properties of set-valued maps (measurability, Lipschitz continuity, bounded variation) are reduced to the corresponding uniform properties of its GS-selections. This theory is applied to formulate regularity conditions for the first-order of convergence of iterated set-valued quadrature formulae approximating the Aumann integral.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Zusätzliche Informationen: | Contents:
1. Introduction 2. Preliminaries 3. Representations of Sets by Generalized Steiner Points 4. Generalized Steiner Points and Arithmetic Set Operations 5. Regularity Properties of GS-selections 6. Approximate Set-Valued Integration 7. Conclusions |
Keywords: | Generalized Steiner selections; Demyanov distance; Aumann integral; Castaing representation; Set-valued maps; Arithmetic set operations |
Fachklassifikationen: | Mathematics Subject Classification Code: 54C65 (28B20 54C60 26E25 52A20) |
Institutionen der Universität: | Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 03 Mär 2021 11:01 |
Letzte Änderung: | 13 Jun 2024 11:51 |
URI: | https://eref.uni-bayreuth.de/id/eprint/63624 |