Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Regularity and Integration of Set-Valued Maps Represented by Generalized Steiner Points

Titelangaben

Baier, Robert ; Farkhi, Elza:
Regularity and Integration of Set-Valued Maps Represented by Generalized Steiner Points.
In: Set-Valued Analysis. Bd. 15 (2007) . - S. 185-207.
ISSN 0927-6947
DOI: https://doi.org/10.1007/s11228-006-0038-0

Rez.:

Weitere URLs

Abstract

A family of probability measures on the unit ball in |Rn generates a family of generalized Steiner (GS-)points for every convex compact set in |Rn. Such a "rich" family of probability measures determines a representation of a convex compact set by GS-points. In this way, a representation of a set-valued map with convex compact images is constructed by GS-selections (which are defined by the GS-points of its images). The properties of the GS-points allow to represent Minkowski sum, Demyanov difference and Demyanov distance between sets in terms of their GS-points, as well as the Aumann integral of a set-valued map is represented by the integrals of its GS-selections. Regularity properties of set-valued maps (measurability, Lipschitz continuity, bounded variation) are reduced to the corresponding uniform properties of its GS-selections. This theory is applied to formulate regularity conditions for the first-order of convergence of iterated set-valued quadrature formulae approximating the Aumann integral.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Zusätzliche Informationen: Contents:
1. Introduction
2. Preliminaries
3. Representations of Sets by Generalized Steiner Points
4. Generalized Steiner Points and Arithmetic Set Operations
5. Regularity Properties of GS-selections
6. Approximate Set-Valued Integration
7. Conclusions
Keywords: Generalized Steiner selections; Demyanov distance; Aumann integral; Castaing representation; Set-valued maps; Arithmetic set operations
Fachklassifikationen: Mathematics Subject Classification Code: 54C65 (28B20 54C60 26E25 52A20)
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik)
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik
500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 03 Mär 2021 11:01
Letzte Änderung: 13 Jun 2024 11:51
URI: https://eref.uni-bayreuth.de/id/eprint/63624