Titelangaben
Baier, Robert:
Generalized Steiner Selections Applied to Standard Problems of Set-Valued Numerical Analysis.
In: Staicu, Vasile
(Hrsg.):
Differential Equations, Chaos and Variational Problems. -
Basel
: Birkhäuser
,
2007
. - S. 49-60
. - (Progress in Nonlinear Differential Equations and Their Applications
; 75
)
ISBN 978-3-7643-8481-4
DOI: https://doi.org/10.1007/978-3-7643-8482-1_4
Rez.: |
Weitere URLs
Abstract
Generalized Steiner points and the corresponding selections for set-valued maps share interesting commutation properties with set operations which make them suitable for the set-valued numerical problems presented here. This short overview will present first applications of these selections to standard problems in this area, namely representation of convex, compact sets in |Rn and set operations, set-valued integration and interpolation as well as the calculation of attainable sets of linear differential inclusions. Hereby, the convergence results are given uniformly for a dense countable representation of generalized Steiner points/selections. To achieve this aim, stronger conditions on the set-valued map F have to be taken into account, e.g. the Lipschitz condition on F has to be satisfied for the Demyanov distance instead of the Hausdorff distance. To establish an overview on several applications, not the strongest available results are formulated in this article.
Weitere Angaben
Publikationsform: | Aufsatz in einem Buch |
---|---|
Begutachteter Beitrag: | Ja |
Zusätzliche Informationen: | Contents:
1. Preliminaries 2. Representation and Arithmetics of Sets 3. Regularity of Set-Valued Maps 4. Set-Valued Interpolation and Quadrature Methods 5. Linear Differential Inclusions 6. Conclusions |
Keywords: | Generalized Steiner selections; Set-valued quadrature methods and interpolation; Linear differential inclusions; Attainable sets; Lipschitz and absolutely continuous selections; Set operation |
Fachklassifikationen: | Mathematics Subject Classification Code: 54C65 (93B03 93C05 28B20) |
Institutionen der Universität: | Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 04 Mär 2021 09:47 |
Letzte Änderung: | 19 Mai 2021 10:41 |
URI: | https://eref.uni-bayreuth.de/id/eprint/63666 |