Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

How to Support Users in Understanding Intelligent Systems? An Analysis and Conceptual Framework of User Questions Considering User Mindsets, Involvement and Knowledge Outcomes

Titelangaben

Buschek, Daniel ; Eiband, Malin ; Hussmann, Heinrich:
How to Support Users in Understanding Intelligent Systems? An Analysis and Conceptual Framework of User Questions Considering User Mindsets, Involvement and Knowledge Outcomes.
In: ACM Transactions on Interactive Intelligent Systems. Bd. 12 (2022) Heft 4 . - 29.
ISSN 2160-6455
DOI: https://doi.org/10.1145/3519264

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
AI Tools - Continuous Interaction with Computational Intelligence Tools
Ohne Angabe

Abstract

The opaque nature of many intelligent systems violates established usability principles and thus presents a challenge for human-computer interaction. Research in the field therefore highlights the need for transparency, scrutability, intelligibility, interpretability and explainability, among others. While all of these terms carry a vision of supporting users in understanding intelligent systems, the underlying notions and assumptions about users and their interaction with the system often remain unclear. We review the literature in HCI through the lens of implied user questions to synthesise a conceptual framework integrating user mindsets, user involvement, and knowledge outcomes to reveal, differentiate and classify current notions in prior work. This framework aims to resolve conceptual ambiguity in the field and enables researchers to clarify their assumptions and become aware of those made in prior work. We further discuss related aspects such as stakeholders and trust, and also provide material to apply our framework in practice (e.g. ideation / design sessions). We thus hope to advance and structure the dialogue on supporting users in understanding intelligent systems.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: scrutability; interpretability; interactive machine learning; transparency; end-user debugging; Review; accountability; intelligibility; explainability; intelligent systems
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
Eingestellt am: 15 Jun 2022 09:17
Letzte Änderung: 19 Okt 2023 12:59
URI: https://eref.uni-bayreuth.de/id/eprint/70109