Titelangaben
Buschek, Daniel:
Probabilistic UI Representation and Reasoning in Touch Interfaces.
In: Williamson, John H. ; Oulasvirta, Antti ; Kristensson, Per Ola ; Banovic, Nikola
(Hrsg.):
Bayesian Methods for Interaction and Design. -
Cambridge, UK
: Cambridge University Press
,
2022
. - S. 163-187
ISBN 978-1-108-79270-7
DOI: https://doi.org/10.1017/9781108874830
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID AI Tools - Continuous Interaction with Computational Intelligence Tools Ohne Angabe |
---|
Abstract
This chapter describes and reflects on the ProbUI framework as an example of a probabilistic alternative to the representation of input behaviour in graphical user interfaces (GUIs), in particular for touch: Concretely, ProbUI treats touch input as uncertain and decouples the GUI elements' visuals from their internal representation of user behaviour. This opens up three generalisations beyond the current standard of bounding boxes, namely allowing for probabilistic handling of input behaviour, multiple such behaviour representations per GUI element, and sequential models. The chapter reflects on ProbUI and more broadly on probabilistic approaches for building GUIs, extracting a generalised perspective of viewing GUIs as a method for structuring signal and noise in an abstract input behaviour space. The chapter concludes with implications for the design of (touch) GUIs to improve usability and user experience, in particular by building adaptive GUIs that reason about, and react to, ongoing user input behaviour
Weitere Angaben
Publikationsform: | Aufsatz in einem Buch |
---|---|
Begutachteter Beitrag: | Ja |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik |
Eingestellt am: | 10 Nov 2022 12:10 |
Letzte Änderung: | 26 Sep 2024 13:59 |
URI: | https://eref.uni-bayreuth.de/id/eprint/72744 |