Titelangaben
Dettweiler, Michael ; Reiter, Stefan:
An algorithm of Katz and its application to the inverse Galois problem.
In: Journal of Symbolic Computation.
Bd. 30
(2000)
Heft 6
.
- S. 761-798.
ISSN 0747-7171
DOI: https://doi.org/10.1006/jsco.2000.0382
Rez.: |
Abstract
In this paper we present a new and elementary approach for proving the main results of Katz (1996) using the Jordan–Pochhammer matrices of Takano and Bannai (1976) and Haraoka (1994). We find an explicit version of the middle convolution of Katz (1996) that connects certain tuples of matrices in linear groups. From this, Katz’ existence algorithm for rigid tuples in linear groups can easily be deduced. It can further be shown that the convolution operation on tuples commutes with the braid group action. This yields a new approach in inverse Galois theory for realizing subgroups of linear groups regularly as Galois groups over Q. This approach is then applied to realize numerous series of classical groups regularly as Galois groups over Q. In the Appendix we treat an additive version of the convolution.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Institutionen der Universität: | Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik IV (Zahlentheorie) Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik IV (Zahlentheorie) > Lehrstuhl Mathematik IV (Zahlentheorie) - Univ.-Prof. Dr. Michael Dettweiler |
Titel an der UBT entstanden: | Nein |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 05 Mai 2023 07:03 |
Letzte Änderung: | 05 Mai 2023 07:08 |
URI: | https://eref.uni-bayreuth.de/id/eprint/75228 |