Titelangaben
    
    Dettweiler, Michael ; Catanese, Fabrizio:
Vector bundles on curves coming from variation of Hodge structures.
  
   
    
    In: International Journal of Mathematics.
      
      Bd. 27
      
      (2016)
       Heft  7
    .
    
     - 1640001.
    
ISSN 1793-6519
    
    
      
DOI: https://doi.org/10.1142/S0129167X16400012
    
    
    
      
| Rez.: | 
Abstract
Fujita’s second theorem for Kähler fibre spaces over a curve asserts, that the direct image V of the relative dualizing sheaf splits as the direct sum V=A⊕Q, where A is ample and Q is unitary flat. We focus on our negative answer [F. Catanese and M. Dettweiler, Answer to a question by Fujita on variation of Hodge structures, to appear in Adv. Stud. Pure Math.] to a question by Fujita: is V semiample? We give here an infinite series of counterexamples using hypergeometric integrals and we give a simple argument to show that the monodromy representation is infinite. Our counterexamples are surfaces of general type with positive index, explicitly given as abelian coverings with group (Z/n)2 of a Del Pezzo surface Z of degree 5 (branched on the union of the lines of Z, which form a bianticanonical divisor), and endowed with a semistable fibration with only three singular fibres. The simplest such surfaces are the three ball quotients considered in [I. C. Bauer and F. Catanese, A volume maximizing canonical surface in 3-space, Comment. Math. Helv.83(1) (2008) 387–406.], fibred over a curve of genus 2, and with fibres of genus 4. These examples are a larger class than the ones corresponding to Shimura curves in the moduli space of Abelian varieties.
Weitere Angaben
| Publikationsform: | Artikel in einer Zeitschrift | 
|---|---|
| Begutachteter Beitrag: | Ja | 
| Keywords: | Relative dualizing sheaf; semiamplenett; monodromy; semistable fibration | 
| Fachklassifikationen: | Mathematics Subject Classification 2010: 14D0, 14C30, 32G20, 33C60 | 
| Institutionen der Universität: | Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik IV (Zahlentheorie) Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik IV (Zahlentheorie) > Lehrstuhl Mathematik IV (Zahlentheorie) - Univ.-Prof. Dr. Michael Dettweiler | 
| Titel an der UBT entstanden: | Ja | 
| Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik | 
| Eingestellt am: | 05 Mai 2023 10:25 | 
| Letzte Änderung: | 03 Aug 2023 13:33 | 
| URI: | https://eref.uni-bayreuth.de/id/eprint/75961 | 
 
        
 bei Google Scholar
 bei Google Scholar