Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Wearable full-body motion tracking of activities of daily living predicts disease trajectory in Duchenne muscular dystrophy

Titelangaben

Ricotti, Valeria ; Kadirvelu, Balasundaram ; Selby, Victoria ; Festenstein, Richard ; Mercuri, Eugenio ; Voit, Thomas ; Faisal, A. Aldo:
Wearable full-body motion tracking of activities of daily living predicts disease trajectory in Duchenne muscular dystrophy.
In: Nature Medicine. Bd. 29 (2023) Heft 1 . - S. 95-103.
ISSN 1546-170X
DOI: https://doi.org/10.1038/s41591-022-02045-1

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

Artificial intelligence has the potential to revolutionize healthcare, yet clinical trials in neurological diseases continue to rely on subjective, semiquantitative and motivation-dependent endpoints for drug development. To overcome this limitation, we collected a digital readout of whole-body movement behavior of patients with Duchenne muscular dystrophy (DMD) (n = 21) and age-matched controls (n = 17). Movement behavior was assessed while the participant engaged in everyday activities using a 17-sensor bodysuit during three clinical visits over the course of 12 months. We first defined new movement behavioral fingerprints capable of distinguishing DMD from controls. Then, we used machine learning algorithms that combined the behavioral fingerprints to make cross-sectional and longitudinal disease course predictions, which outperformed predictions derived from currently used clinical assessments. Finally, using Bayesian optimization, we constructed a behavioral biomarker, termed the KineDMD ethomic biomarker, which is derived from daily-life behavioral data and whose value progresses with age in an S-shaped sigmoid curve form. The biomarker developed in this study, derived from digital readouts of daily-life movement behavior, can predict disease progression in patients with muscular dystrophy and can potentially track the response to therapy.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Lebenswissenschaften: Lebensmittel, Ernährung und Gesundheit > Lehrstuhl Digital Health mit Schwerpunkt Data Science in Lebenswissenschaften > Lehrstuhl Digital Health mit Schwerpunkt Data Science in Lebenswissenschaften - Univ.-Prof. Dr. Aldo Faisal
Fakultäten
Fakultäten > Fakultät für Lebenswissenschaften: Lebensmittel, Ernährung und Gesundheit
Fakultäten > Fakultät für Lebenswissenschaften: Lebensmittel, Ernährung und Gesundheit > Lehrstuhl Digital Health mit Schwerpunkt Data Science in Lebenswissenschaften
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
Eingestellt am: 13 Mai 2023 21:01
Letzte Änderung: 17 Aug 2023 08:30
URI: https://eref.uni-bayreuth.de/id/eprint/76440