Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

A Koopman-Takens theorem : Linear least squares prediction of nonlinear time series

Titelangaben

Koltai, Peter ; Kunde, Philipp:
A Koopman-Takens theorem : Linear least squares prediction of nonlinear time series.
In: Communications in Mathematical Physics. Bd. 405 (2024) . - 120.
ISSN 1432-0916
DOI: https://doi.org/10.1007/s00220-024-05004-8

Volltext

Link zum Volltext (externe URL): Volltext

Weitere URLs

Abstract

The least squares linear filter, also called the Wiener filter, is a popular tool to predict the next element(s) of time series by linear combination of time-delayed observations. We consider observation sequences of deterministic dynamics, and ask: Which pairs of observation function and dynamics are predictable? If one allows for nonlinear mappings of time-delayed observations, then Takens' well-known theorem implies that a set of pairs, large in a specific topological sense, exists for which an exact prediction is possible. We show that a similar statement applies for the linear least squares filter in the infinite-delay limit, by considering the forecast problem for invertible measure-preserving maps and the Koopman operator on square-integrable functions.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Dynamical Systems and Data > Lehrstuhl Dynamical Systems and Data - Univ.-Prof. Dr. Peter Koltai
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Dynamical Systems and Data
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 29 Aug 2023 06:11
Letzte Änderung: 06 Mai 2024 06:10
URI: https://eref.uni-bayreuth.de/id/eprint/86695