Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Bio-based electrospun polyamide membrane - sustainable multipurpose filter membranes for microplastic filtration

Titelangaben

Rist, Maximilian ; Greiner, Andreas:
Bio-based electrospun polyamide membrane - sustainable multipurpose filter membranes for microplastic filtration.
In: RSC Applied Polymers. Bd. 2 (2024) Heft 4 . - S. 642-655.
ISSN 2755-371X
DOI: https://doi.org/10.1039/D3LP00201B

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
SFB 1357: Mikroplastik - Abbau und Verhalten von Kunststoffen und deren Mikroplastik-Partikeln in technischen Systemen der Wasser- und Abfallwirtschaft
SFB 1357-391977956

Projektfinanzierung: Deutsche Forschungsgemeinschaft

Abstract

Electrospinning is a highly versatile method for manufacturing filter membranes, contributing to advanced concepts for the production of sustainable membranes for waste water treatment. The use of bio-based polymers could expand the sustainability of such filter membranes significantly. Bio-based PA 6.9, for example, shows great potential for the creation of bio-sourced electrospun filter membranes (EFMs) with high mechanical properties and high resistance to solvents. The polyamide is synthesized from plant oil-based azelaic acid and electrospun from chloroform/formic acid to produce self-standing electrospun nonwovens. These highly porous membranes show high efficiencies of up to 99.8% for the filtration of polystyrene microparticles (PS-MPs) from water. Additionally, the electrospun nonwovens exhibit comparable filtration efficiencies to FFP3 masks for the removal of 0.3 μm particles from air. The membranes show hydrophobic surface behavior (water contact angle of >120°) making them suitable for water oil separation. Efficiencies of up to 99.9% can be achieved for the separation of water and chloroform from 50 vol% mixtures, while maintaining a high permeate flux of up to 5345 L m−2 h−1. Additionally, the membranes can be reused for at least ten times without any significant reduction in efficiency or flux.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Makromolekulare Chemie II
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Makromolekulare Chemie II > Lehrstuhl Makromolekulare Chemie II - Univ.-Prof. Dr. Andreas Greiner
Forschungseinrichtungen > Institute in Verbindung mit der Universität > Bayerisches Polymerinstitut (BPI)
Forschungseinrichtungen > Sonderforschungsbereiche, Forschergruppen > SFB 1357 - MIKROPLASTIK
Fakultäten
Forschungseinrichtungen
Forschungseinrichtungen > Institute in Verbindung mit der Universität
Forschungseinrichtungen > Sonderforschungsbereiche, Forschergruppen
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
500 Naturwissenschaften und Mathematik > 540 Chemie
Eingestellt am: 18 Jan 2024 09:34
Letzte Änderung: 16 Jan 2025 14:11
URI: https://eref.uni-bayreuth.de/id/eprint/88268