Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

An Improved Convergence Result for the Smoothed Particle Hydrodynamics Method

Titelangaben

Franz, Tino ; Wendland, Holger:
An Improved Convergence Result for the Smoothed Particle Hydrodynamics Method.
In: SIAM Journal on Mathematical Analysis. Bd. 53 (2021) . - S. 1239-1262.
ISSN 1095-7154
DOI: https://doi.org/10.1137/19M1308293

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Konvergenz von Partikelverfahren, insbesondere SPH / Convergence of particle methods, particularly SPH
Ohne Angabe

Projektfinanzierung: Deutsche Forschungsgemeinschaft

Abstract

The smoothed particle hydrodynamics (SPH) method is a popular, kernel-based discretization method for fluid-flow problems. Despite its frequent use, mathematical understanding is still limited. In [T. Franz and H. Wendland, SIAM J. Math. Anal., 50 (2018), pp. 4752--4784] we proved convergence for a specific flow problem under appropriate conditions on the underlying kernel. The kernel has to satisfy so-called moment and approximation conditions. We also showed that the generalized Wendland kernels satisfy these conditions in odd space dimensions. In this paper, we will significantly improve the above results in the following ways. We will show that the results also hold in even space dimensions. We will show that the generalized Wendland kernels satisfy the approximation condition of any order, which means that for these kernels we can eliminate the dependence of the convergence rate on the approximation condition. We will show that the standard Wendland kernels, though they perform numerically similarly, do not satisfy the approximation condition.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: SPH; Euler equations; convergence analysis; kernel-based approximation
Fachklassifikationen: Mathematics Subject Classification Code: 65M15 35Q31 65M75 76M28 41A30
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik III (Angewandte und Numerische Analysis) > Lehrstuhl Mathematik III (Angewandte und Numerische Analysis) - Univ.-Prof. Dr. Holger Wendland
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 06 Mär 2024 08:26
Letzte Änderung: 06 Mär 2024 08:26
URI: https://eref.uni-bayreuth.de/id/eprint/88803