Titelangaben
McKay, Michael ; Cseh, Ágnes ; Manlove, David:
Envy-freeness in 3D hedonic games.
In: Autonomous Agents and Multi-Agent Systems.
Bd. 38
(2024)
.
- 37.
ISSN 1573-7454
DOI: https://doi.org/10.1007/s10458-024-09657-6
Abstract
We study the problem of fairly partitioning a set of agents into coalitions based on the agents’ additively separable preferences, which can also be viewed as a hedonic game. We study three successively weaker solution concepts, related to envy, weakly justified envy, and justified envy. In a model in which coalitions may have any size, trivial solutions exist for these concepts, which provides a strong motivation for placing restrictions on coalition size. In this paper, we require feasible coalitions to have size three. We study the existence of partitions that are envy-free, weakly justified envy-free, and justified envy-free, and the computational complexity of finding such partitions, if they exist. We impose various restrictions on the agents’ preferences and present a complete complexity classification in terms of these restrictions.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wirtschaftsmathematik > Lehrstuhl Wirtschaftsmathematik - Univ.-Prof. Dr. Jörg Rambau Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Dynamical Systems and Data > Lehrstuhl Dynamical Systems and Data - Univ.-Prof. Dr. Peter Koltai |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 31 Jul 2024 05:45 |
Letzte Änderung: | 31 Jul 2024 05:45 |
URI: | https://eref.uni-bayreuth.de/id/eprint/90117 |