Titelangaben
Libon, Lélia ; Spiekermann, Georg ; Blanchard, Ingrid ; Kaa, Johannes M. ; Dominijanni, Serena ; Sieber, Melanie J. ; Förster, Mirko ; Albers, Christian ; Morgenroth, Wolfgang ; McCammon, Catherine ; Schreiber, Anja ; Roddatis, Vladimir ; Glazyrin, Konstantin ; Husband, Rachel J. ; Hennet, Louis ; Appel, Karen ; Wilke, Max:
Reevaluating the fate of subducted magnesite in the Earth's lower mantle.
In: Physics of the Earth and Planetary Interiors.
Bd. 355
(2024)
.
- 107238.
ISSN 1872-7395
DOI: https://doi.org/10.1016/j.pepi.2024.107238
Abstract
The role that subducted carbonates play in sourcing and storing carbon in the deep Earth's interior is uncertain, primarily due to poor constraints on the stability of carbonate minerals when interacting with mantle phases. Magnesite (MgCO3) is the most prominent carbonate phase to be present at all mantle pressure-temperature conditions. In this study, we combined multi-anvil apparatus and laser-heated diamond anvil cell experiments to investigate the stability of magnesite in contact with iron-bearing bridgmanite. We examined the presence of melt, decarbonation, and diamond formation at shallow to mid-lower mantle conditions (25 to 68 GPa; 1350 to 2000 K). Our main observation indicates that magnesite is not stable at shallow lower mantle conditions. At 25 GPa and under oxidizing conditions, melting of magnesite is observed in multi-anvil experiments at temperatures corresponding to all geotherms except the coldest ones. Whereas, at higher pressures and under reducing conditions, in our laser-heated diamond-anvil cell experiments, diamond nucleation is observed as a sub-solidus process even at temperatures relevant to the coldest slab geotherms. Our results indicate that magnesite was reduced and formed diamonds when in contact with the ambient peridotite mantle at depths corresponding to the shallowest lower mantle (33 GPa). Thus, we establish that solid magnesite decomposes at depths of ∼700 km as it contacts the ambient mantle. Consequently, the recycling of carbonates will hinder their transport deeper into the lower mantle.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Keywords: | Deep carbon cycle; Lower mantle; Carbonates; Diamond formation; Decarbonation |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Fachgruppe Materialwissenschaften > Lehrstuhl Kristallographie |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 530 Physik |
Eingestellt am: | 22 Okt 2024 10:17 |
Letzte Änderung: | 22 Okt 2024 10:17 |
URI: | https://eref.uni-bayreuth.de/id/eprint/90802 |