Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Seawater to Sustainable Fuel: Sunlight-Driven Green Hydrogen Generation with an Atomically Dispersed Photocatalyst

Titelangaben

Waiba, Satyadeep ; Banerjee, Manami ; Frederiksen, Lindsey ; Jaworski, Aleksander ; Monti, Susanna ; Barcaro, Giovanni ; Karaca, Kaan ; He, Xiufang ; Rokicińska, Anna ; Vuong, Thanh Huyen ; Vilé, Gianvito ; Kuśtrowski, Piotr ; Rabeah, Jabor ; Reyes, David ; Ren, Peng ; Bagnich, Sergey ; Köhler, Anna ; Hohenberger, Daniel ; Breu, Josef ; Dyson, Paul J. ; Das, Shoubhik:
Seawater to Sustainable Fuel: Sunlight-Driven Green Hydrogen Generation with an Atomically Dispersed Photocatalyst.
In: Journal of the American Chemical Society. (22 Oktober 2025) .
ISSN 1520-5126
DOI: https://doi.org/10.1021/jacs.5c11004

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

Green hydrogen is widely regarded as a key to a sustainable future, offering a clean and flexible fuel option for decarbonizing the energy, transport, and industrial sectors. While photocatalytic approaches are known for generating hydrogen directly from water, most existing methods require (over)stoichiometric amounts of sacrificial reagents, which is far from ideal for the production of green hydrogen. To address this challenge, we have developed an atomically dispersed Ni-based photocatalyst that achieves hydrogen evolution rates of up to 270 μmol/g/h (168 mmol/gNi/h). Remarkably, this photocatalyst also exhibits high photoreactivity under direct sunlight, producing up to 17 μmol/g/h (10.6 mmol/gNi/h) of hydrogen. Impressively, the catalyst can even generate green hydrogen directly from seawater, up to 144 μmol/g/h, demonstrating significant potential for real-world applications. The photocatalyst is exceptionally stable, remaining active even after 720 h (140 h of irradiation and 580 h resting time) of operation and retaining high performance over more than 15 cycles. Furthermore, comprehensive spectroscopic and structural analyses─including HRTEM, PXRD, ssNMR, XPS, and XAS─provide detailed structural insights and confirm the atomically dispersed nature of the Ni species. In-depth mechanistic studies have elucidated the critical role of atomic dispersion in enabling robust photocatalytic efficiency.Green hydrogen is widely regarded as a key to a sustainable future, offering a clean and flexible fuel option for decarbonizing the energy, transport, and industrial sectors. While photocatalytic approaches are known for generating hydrogen directly from water, most existing methods require (over)stoichiometric amounts of sacrificial reagents, which is far from ideal for the production of green hydrogen. To address this challenge, we have developed an atomically dispersed Ni-based photocatalyst that achieves hydrogen evolution rates of up to 270 μmol/g/h (168 mmol/gNi/h). Remarkably, this photocatalyst also exhibits high photoreactivity under direct sunlight, producing up to 17 μmol/g/h (10.6 mmol/gNi/h) of hydrogen. Impressively, the catalyst can even generate green hydrogen directly from seawater, up to 144 μmol/g/h, demonstrating significant potential for real-world applications. The photocatalyst is exceptionally stable, remaining active even after 720 h (140 h of irradiation and 580 h resting time) of operation and retaining high performance over more than 15 cycles. Furthermore, comprehensive spectroscopic and structural analyses─including HRTEM, PXRD, ssNMR, XPS, and XAS─provide detailed structural insights and confirm the atomically dispersed nature of the Ni species. In-depth mechanistic studies have elucidated the critical role of atomic dispersion in enabling robust photocatalytic efficiency.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut > Lehrstuhl Experimentalphysik II - Optoelektronik weicher Materie
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut > Lehrstuhl Experimentalphysik II - Optoelektronik weicher Materie > Lehrstuhl Experimentalphysik II - Optoelektronik weicher Materie - Univ.-Prof. Dr. Anna Köhler
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Organische Chemie I - Photo- und Elektrokatalyse für Nachhaltigkeit > Lehrstuhl Organische Chemie I - Photo- und Elektrokatalyse für Nachhaltigkeit - Univ.-Prof. Dr. Shoubhik Das
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Anorganische Kolloidchemie für elektrochemische Energiespeicher > Lehrstuhl Anorganische Kolloidchemie für elektrochemische Energiespeicher - Univ.-Prof. Dr. Josef Breu
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 530 Physik
Eingestellt am: 24 Okt 2025 08:07
Letzte Änderung: 24 Okt 2025 09:36
URI: https://eref.uni-bayreuth.de/id/eprint/95003