Titelangaben
Gáborik, Lukáš ; Kurz, Sascha ; Mazzuoccolo, Giuseppe ; Rajnik, Jozef ; Rieg, Florian:
Manhattan and Chebyshev flows.
Bayreuth
,
2025
. - 25 S.
DOI: https://doi.org/10.15495/EPub_UBT_00008626
Abstract
We investigate multidimensional nowhere-zero flows of bridgeless graphs. By extending the established use of the Euclidean norm, this paper considers the Manhattan and Chebyshev norms. These flow numbers are always rational and in two dimensions, they distinguish between cubic graphs that are 3-edge-colourable and those that are not. We also prove that, for any bridgeless graph G, the two values for the two norms are the same. We give new upper and lower bounds and structural results, and we find connections with cycle covers. Finally, we introduce the idea of t-flow-pairs, which comes from a method used in Seymour’s proof of the 6-flow theorem, and we propose new conjectures that could be stronger than Tutte’s famous 5-flow conjecture.
Weitere Angaben
| Publikationsform: | Preprint, Postprint |
|---|---|
| Keywords: | nowhere-zero flow; Manhattan norm; Chebyshev norm; cycle double cover; edge-colourability; snark |
| Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wirtschaftsmathematik Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik |
| Titel an der UBT entstanden: | Ja |
| Themengebiete aus DDC: | 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik 500 Naturwissenschaften und Mathematik > 510 Mathematik |
| Eingestellt am: | 01 Nov 2025 22:00 |
| Letzte Änderung: | 03 Nov 2025 06:41 |
| URI: | https://eref.uni-bayreuth.de/id/eprint/95085 |

bei Google Scholar