Title data
Hildner, Richard ; Köhler, Anna ; Müller-Buschbaum, Peter ; Panzer, Fabian ; Thelakkat, Mukundan:
π-Conjugated Donor Polymers : Structure Formation and Morphology in Solution, Bulk and Photovoltaic Blends.
In: Advanced Energy Materials.
Vol. 7
(2017)
Issue 16
.
- 1700314.
ISSN 1614-6840
DOI: https://doi.org/10.1002/aenm.201700314
Abstract in another language
The field of conjugated polymers has expanded in the last years considerably and impressive performance, both in field effect transistors and photovoltaic devices has been achieved. After the initial emphasis on improving the performance, more emphasis is recently given to fundamental studies on structure formation. Therefore, this review concentrates on systematic correlation studies of structure formation in solution, in bulk and thin films as well as in photovoltaic blends of donor-type π-conjugated polymers. The main focus is on the correlation of structure, morphology and molecular chain orientation as a function of macromolecular properties such as molecular weight, dispersity, non-covalent intramolecular and intermolecular interactions, solvent interactions and innovative processing techniques. The tools applied for elucidating fundamental information of structure formation and orientation mainly consist of optical spectroscopy and scattering techniques (SAXS/WAXS/GIWAXS). Since the field of conjugated polymers is very vast in terms of chemical structural diversity, only selected examples of donor polymers are covered here and the emerging class of n-type conjugated polymers are not included. The focus is not on the structural variation or their performance in solar cells or transistors in terms of record efficiencies, but on the systematic studies leading to a structure-property correlation in donor polymers.
Further data
Item Type: | Article in a journal |
---|---|
Refereed: | Yes |
Institutions of the University: | Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Chair Experimental Physics II - Optoelectronics of Soft Matter > Chair Experimental Physics II - Optoelectronics of Soft Matter - Univ.-Prof. Dr. Anna Köhler Faculties Faculties > Faculty of Mathematics, Physics und Computer Science Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Chair Experimental Physics II - Optoelectronics of Soft Matter |
Result of work at the UBT: | Yes |
DDC Subjects: | 500 Science > 530 Physics |
Date Deposited: | 08 Aug 2017 06:03 |
Last Modified: | 04 Aug 2023 06:39 |
URI: | https://eref.uni-bayreuth.de/id/eprint/39071 |