Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

The Electronically Excited States of LH2 Complexes from Rhodopseudomonas acidophila Strain 10050 Studied by Time-Resolved Spectroscopy and Dynamic Monte Carlo Simulations. I. Isolated, Non-Interacting LH2 Complexes

Title data

Pflock, Tobias ; Oellerich, Silke ; Southall, June ; Cogdell, Richard J. ; Ullmann, G. Matthias ; Köhler, Jürgen:
The Electronically Excited States of LH2 Complexes from Rhodopseudomonas acidophila Strain 10050 Studied by Time-Resolved Spectroscopy and Dynamic Monte Carlo Simulations. I. Isolated, Non-Interacting LH2 Complexes.
In: The Journal of Physical Chemistry B. Vol. 115 (2011) Issue 28 . - pp. 8813-8820.
ISSN 1520-5207
DOI: https://doi.org/10.1021/jp202353c

Abstract in another language

We have employed time-resolved spectroscopy on the picosecond time scale in combination with dynamic Monte Carlo simulations to investigate the photophysical properties of light-harvesting 2 (LH2) complexes from the purple photosynthetic bacterium Rhodopseudomonas acidophila. The variations of the fluorescence transients were studied as a function of the excitation fluence, the repetition rate of the excitation and the sample preparation conditions. Here we present the results obtained on detergent solubilized LH2 complexes, i.e., avoiding intercomplex interactions, and show that a simple four-state model is sufficient to grasp the experimental observations quantitatively without the need for any free parameters. This approach allows us to obtain a quantitative measure for the singlettriplet annihilation rate in isolated, noninteracting LH2 complexes.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Chair Experimental Physics IX - Spectroscopy of Soft Matter > Chair Experimental Physics IX - Spectroscopy of Soft Matter - Univ.-Prof. Dr. Jürgen Köhler
Faculties
Faculties > Faculty of Mathematics, Physics und Computer Science
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Chair Experimental Physics IX - Spectroscopy of Soft Matter
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 530 Physics
Date Deposited: 10 Apr 2018 11:36
Last Modified: 11 Jan 2023 10:59
URI: https://eref.uni-bayreuth.de/id/eprint/43385