Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Simple Games versus Weighted Voting Games

Title data

Hof, Frits ; Kern, Walter ; Kurz, Sascha ; Paulusma, Daniël:
Simple Games versus Weighted Voting Games.
2018
Event: 11th International Symposium on Algorithmic Game Theory, SAGT 2018 , 11.-13.09.2018 , Beijing, China.
(Conference item: Conference , Speech )

Official URL: Volltext

Abstract in another language

A simple game (N,v) is given by a set N of n players and a partition of 2^N into a set L of losing coalitions L' with value v(L')=0 that is closed under taking subsets and a set W of winning coalitions W' with v(W')=1. Simple games with alpha= \min_{p>=0}\max_{W' in W,L' in L} p(L')/p(W') <1 are known as weighted voting games. Freixas and Kurz (IJGT, 2014) conjectured that alpha<=n/4 for every simple game (N,v). We confirm this conjecture for two complementary cases, namely when all minimal winning coalitions have size 3 and when no minimal winning coalition has size 3. As a general bound we prove that alpha<=2n/7 for every simple game (N,v). For complete simple games, Freixas and Kurz conjectured that alpha=O(sqrt(n)). We prove this conjecture up to a ln n factor. We also prove that for graphic simple games, that is, simple games in which every minimal winning coalition has size 2, computing alpha is NP-hard, but polynomial-time solvable if the underlying graph is bipartite. Moreover, we show that for every graphic simple game, deciding if alpha<a is polynomial-time solvable for every fixed a>0.

Further data

Item Type: Conference item (Speech)
Refereed: Yes
Additional notes: Speaker: Walter Kern
Keywords: simple game; weighted voting game; graphic simple game; complete simple game
Subject classification: Mathematics Subject Classification Code: 91B12 94C10
Institutions of the University: Faculties > Faculty of Mathematics, Physics und Computer Science
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematical Economics
Profile Fields > Emerging Fields
Profile Fields > Emerging Fields > Governance and Responsibility
Faculties
Profile Fields
Result of work at the UBT: Yes
DDC Subjects: 000 Computer Science, information, general works > 004 Computer science
500 Science > 510 Mathematics
Date Deposited: 27 Sep 2018 09:09
Last Modified: 27 Sep 2018 09:09
URI: https://eref.uni-bayreuth.de/id/eprint/45891