Title data
Tetzlaff, David ; Simon, Christopher ; Achilleos, Demetra S. ; Smialkowski, Mathias ; junge Puring, Kai ; Blößer, André ; Piontek, Stefan ; Siegmund, Daniel ; Reisner, Erwin ; Marschall, Roland ; Kasap, Hatice ; Apfel, Ulf-Peter:
FeₓNi₉₋ₓS₈(x = 3-6) as Potential Photocatalysts for Solar-Driven Hydrogen Production?
In: Faraday Discussions.
Vol. 215
(2019)
.
- pp. 216-226.
ISSN 1364-5498
DOI: https://doi.org/10.1039/C8FD00173A
Project information
Project financing: |
Deutsche Forschungsgemeinschaft |
---|
Abstract in another language
The efficient reduction of protons by non-noble metals under mild conditions is a challenge for our modern society. Nature utilises hydrogenases, enzymatic machineries that comprise iron- and nickel- containing active sites, to perform the conversion of protons to hydrogen. We herein report a straightforward synthetic pathway towards well-defined particles of the bio-inspired material FexNi9-xS8, a structural and functional analogue of hydrogenases metal sulfur clusters. Moreover, the potential of pentlandite to serve as photocatalysts for solar-driven H2-production is assessed for the first time. The FexNi9-xS8 materials are visible light responsive (band gaps between 2.02 and 2.49 eV, depending on the pentlandites Fe : Ni content) and display a conduction band energy close to the thermodynamic potential for proton reduction. Despite the limited driving force, a modest activity for photocatalytic H2 has been observed. Our observations show the potential for the future development of pentlandites as photocatalysts. Our work provides a basis to explore powerful synergies between biomimetic chemistry and material design to unlock novel applications in solar energy conversion.
Further data
Item Type: | Article in a journal |
---|---|
Refereed: | Yes |
Institutions of the University: | Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry Faculties Faculties > Faculty of Biology, Chemistry and Earth Sciences Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Physical Chemistry III > Chair Physical Chemistry III - Univ.-Prof. Dr. Roland Marschall Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Physical Chemistry III |
Result of work at the UBT: | No |
DDC Subjects: | 500 Science > 540 Chemistry |
Date Deposited: | 20 Dec 2018 08:17 |
Last Modified: | 07 Feb 2023 13:26 |
URI: | https://eref.uni-bayreuth.de/id/eprint/46752 |