Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Mutational epitope analysis and cross-reactivity of two isoforms of Api g 1, the major celery allergen

Title data

Wangorsch, Andrea ; Ballmer-Weber, Barbara K. ; Rösch, Paul ; Holzhauser, Thomas ; Vieths, Stefan:
Mutational epitope analysis and cross-reactivity of two isoforms of Api g 1, the major celery allergen.
In: Molecular Immunology. Vol. 44 (2007) Issue 10 . - pp. 2518-2527.
ISSN 0161-5890
DOI: https://doi.org/10.1016/j.molimm.2006.12.023

Abstract in another language

For better understanding the cross-reactivity between the major birch pollen and celery allergens, Bet v 1 and Api g 1, respectively, putative epitope areas and structurally important positions for IgE-binding of the isoforms Api g 1.01 and Api g 1.02 were point mutated. The IgE binding capacities were measured in ELISA, the IgE cross-reactivity between the isoforms, mutants and Bet v 1 investigated by ELISA-inhibition experiments with serum pools from patients with confirmed celery allergy (DBPCFC). Api g 1.01 displayed a clearly higher frequency and capacity of IgE binding than Api g 1.02. In Api g 1.01, substitution of lysine against glutamic acid at amino acid position 44, a key residue of the Bet v 1 "P-loop", increased the IgE-binding properties. Structural instability due to proline insertion at position 111/112 resulted in loss of IgE binding of Api g 1.01, but not of Api g 1.02. Between Api g 1.01 and Api g 1.02 only partial cross-reactivity was seen. The data suggest that the IgE epitopes of the two isoforms are distinct and that in contrast to Api g 1.01, the "P-loop" region plays an important role for IgE binding of celery allergic subjects to Api g 1.02. Understanding and investigation of the molecular mechanisms in celery allergy is an important step to generate hypoallergenic proteins for safe and efficacious immunotherapy of food allergy.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Former Professors > Chair Biopolymers - Univ.-Prof. Dr. Paul Rösch
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Former Professors
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Biochemistry with an Emphasis on Biophysical Chemistry
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 540 Chemistry
500 Science > 570 Life sciences, biology
Date Deposited: 29 Jan 2019 10:43
Last Modified: 16 May 2019 05:37
URI: https://eref.uni-bayreuth.de/id/eprint/47104