Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Subspace Packing

Title data

Etzion, Tuvi ; Kurz, Sascha ; Otal, Kamil ; Özbudak, Ferruh:
Subspace Packing.
2019
Event: WCC 2019: The Eleventh International Workshop on Coding and Cryptography , 31.03.-05.04.2019 , Saint-Jacut-de-la-Mer, France.
(Conference item: Workshop , Speech )

Related URLs

Abstract in another language

The Grassmannian G_q(n,k) is the set of all k-dimensional subspaces of the vector space GF(q)^n. It is well known that codes in the Grassmannian space can be used for error-correction in random network coding. On the other hand, these codes are q-analogs of codes in the Johnson scheme, i.e. constant dimension codes. These codes of the Grassmannian G_q(n,k) also form a family of q-analogs of block designs and they are called subspace designs. The application of subspace codes has motivated extensive work on the q-analogs of block designs. In this paper, we examine one of the last families of q-analogs of block designs which was not considered before. This family called subspacepackings is the q-analog of packings. This family of designs was considered recently for network coding solution for a family of multicast networks called the generalized combination networks. A subspace pack-ing t-(n,k,λ)_q is a set S of k-subspaces from G_q(n,k) such that each t-subspace of G_q(n,t) is contained in at most λ elements of S. The goal of this work is to consider the largest size of such subspace packings.

Further data

Item Type: Conference item (Speech)
Refereed: Yes
Additional notes: speaker: Ferruh Özbudak
Keywords: random network coding; subspace codes; packings; designs; q-analogs
Subject classification: Mathematics Subject Classification Code: 51E20 (11T71 94B25)
Institutions of the University: Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematical Economics
Faculties
Faculties > Faculty of Mathematics, Physics und Computer Science
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics
Result of work at the UBT: Yes
DDC Subjects: 000 Computer Science, information, general works > 004 Computer science
500 Science > 510 Mathematics
Date Deposited: 02 Apr 2019 09:18
Last Modified: 02 Apr 2019 09:18
URI: https://eref.uni-bayreuth.de/id/eprint/48519