Title data
Mickoleit, Frank ; Altintoprak, Klara ; Wenz, Nana L. ; Richter, Reinhard ; Wege, Christina ; Schüler, Dirk:
Precise Assembly of Genetically Functionalized Magnetosomes and Tobacco Mosaic Virus Particles Generates a Magnetic Biocomposite.
In: ACS Applied Materials & Interfaces.
Vol. 10
(2018)
Issue 44
.
- pp. 37898-37910.
ISSN 1944-8252
DOI: https://doi.org/10.1021/acsami.8b16355
Abstract in another language
Magnetosomes represent magnetic nanoparticles with unprecedented characteristics. Both their crystal morphology and the composition of the enveloping membrane can be manipulated by genetic means, allowing the display of functional moieties on the particle surface. In this study, we explore the generation of a new biomaterial assembly by coupling magnetosomes with tobacco mosaic virus (TMV) particles, both functionalized with complementary recognition sites. TMV consists of single-stranded RNA encapsidated by more than 2100 coat proteins, which enable chemical modification via functional groups. Incubation of EmGFP- or biotin-decorated TMV particles with magnetosomes genetically functionalized with GFP-binding nanobodies or streptavidin, respectively, results in the formation of magnetic, mesoscopic, strand-like biocomposites. TMV facilitates the agglomeration of magnetosomes by providing a scaffold. The size of the TMV–magnetosome mesostrands can be adjusted by varying the TMV–magnetosome particle ratios. The versatility of this novel material combination is furthermore demonstrated by coupling magnetosomes and terminal, 5′-functionalized TMV particles with high molecular precision, which results in “drumstick”-like TMV–magnetosome complexes. In summary, our approaches provide promising strategies for the generation of new biomaterial assemblies that could be used as scaffold for the introduction of further functionalities, and we foresee a broad application potential in the biomedical and biotechnological field.