Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Local Destabilization of the Metal-Binding Region in Human Copper–Zinc Superoxide Dismutase by Remote Mutations Is a Possible Determinant for Progression of ALS

Title data

Hennig, Janosch ; Andrésen, Cecilia ; Museth, A. Katrine ; Lundström, Patrik ; Tibell, Lena A. E. ; Jonsson, Bengt-Harald:
Local Destabilization of the Metal-Binding Region in Human Copper–Zinc Superoxide Dismutase by Remote Mutations Is a Possible Determinant for Progression of ALS.
In: Biochemistry. Vol. 54 (2015) Issue 2 . - pp. 323-333.
ISSN 1520-4995
DOI: https://doi.org/10.1021/bi500606j

Abstract in another language

More than 100 distinct mutations in the gene CuZnSOD encoding human copper–zinc superoxide dismutase (CuZnSOD) have been associated with familial amyotrophic lateral sclerosis (fALS), a fatal neuronal disease. Many studies of different mutant proteins have found effects on protein stability, catalytic activity, and metal binding, but without a common pattern. Notably, these studies were often performed under conditions far from physiological. Here, we have used experimental conditions of pH 7 and 37 °C and at an ionic strength of 0.2 M to mimic physiological conditions as close as possible in a sample of pure protein. Thus, by using NMR spectroscopy, we have analyzed amide hydrogen exchange of the fALS-associated I113T CuZnSOD variant in its fully metalated state, both at 25 and 37 °C, where 15N relaxation data, as expected, reveals that CuZnSOD I113T exists as a dimer under these conditions. The local dynamics at 82% of all residues have been analyzed in detail. When compared to the wild-type protein, it was found that I113T CuZnSOD is particularly destabilized locally at the ion binding sites of loop 4, the zinc binding loop, which results in frequent exposure of the aggregation prone outer β-strands I and VI of the β-barrel, possibly enabling fibril or aggregate formation. A similar study (Museth, A. K., et al. (2009) Biochemistry, 48, 8817–8829) of amide hydrogen exchange at pH 7 and 25 °C on the G93A variant also revealed a selective destabilization of the zinc binding loop. Thus, a possible scenario in ALS is that elevated local dynamics at the metal binding region can result in toxic species from formation of new interactions at local β-strands.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Biochemistry IV - Biophysical Chemistry > Chair Biochemistry IV - Biophysical Chemistry - Univ.-Prof. Dr. Janosch Hennig
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Biochemistry IV - Biophysical Chemistry
Research Institutions > Central research institutes > Nordbayerisches Zentrum für NMR-Spektroskopie - NMR-Zentrum
Result of work at the UBT: No
DDC Subjects: 500 Science > 540 Chemistry
500 Science > 570 Life sciences, biology
Date Deposited: 07 Oct 2021 13:12
Last Modified: 26 Sep 2024 07:26
URI: https://eref.uni-bayreuth.de/id/eprint/67242