Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Identifying the Signatures of Intermolecular Interactions in Blends of PM6 with Y6 and N4 Using Absorption Spectroscopy

Title data

Kroh, Daniel ; Eller, Fabian ; Schötz, Konstantin ; Wedler, Stefan ; Perdigón-Toro, Lorena ; Freychet, Guillaume ; Wei, Qingya ; Dörr, Maximilian ; Jones, David ; Zou, Yingping ; Herzig, Eva M. ; Neher, Dieter ; Köhler, Anna:
Identifying the Signatures of Intermolecular Interactions in Blends of PM6 with Y6 and N4 Using Absorption Spectroscopy.
In: Advanced Functional Materials. Vol. 32 (2022) Issue 44 . - 2205711.
ISSN 1616-3028
DOI: https://doi.org/10.1002/adfm.202205711

Official URL: Volltext

Abstract in another language

Abstract In organic solar cells, the resulting device efficiency depends strongly on the local morphology and intermolecular interactions of the blend film. Optical spectroscopy was used to identify the spectral signatures of interacting chromophores in blend films of the donor polymer PM6 with two state-of-the-art nonfullerene acceptors, Y6 and N4, which differ merely in the branching point of the side chain. From temperature-dependent absorption and luminescence spectroscopy in solution, it is inferred that both acceptor materials form two types of aggregates that differ in their interaction energy. Y6 forms an aggregate with a predominant J-type character in solution, while for N4 molecules the interaction is predominantly in a H-like manner in solution and freshly spin-cast film, yet the molecules reorient with respect to each other with time or thermal annealing to adopt a more J-type interaction. The different aggregation behavior of the acceptor materials is also reflected in the blend films and accounts for the different solar cell efficiencies reported with the two blends.

Further data

Item Type: Article in a journal
Refereed: Yes
Keywords: charge-transfer states; Frank–Condon analysis; morphology; organic solar cells
Institutions of the University: Faculties
Faculties > Faculty of Mathematics, Physics und Computer Science
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Chair Experimental Physics II - Optoelectronics of Soft Matter > Chair Experimental Physics II - Optoelectronics of Soft Matter - Univ.-Prof. Dr. Anna Köhler
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Juniorprofessor Experimental Physics VII - Dynamics and Structure Formation
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Juniorprofessor Experimental Physics VII - Dynamics and Structure Formation > Juniorprofessor Experimental Physics VII - Dynamics and Structure Formation - Juniorprof. Dr. Eva M. Herzig
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Chair Experimental Physics II - Optoelectronics of Soft Matter
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 530 Physics
Date Deposited: 30 Aug 2022 06:54
Last Modified: 15 Aug 2023 06:54
URI: https://eref.uni-bayreuth.de/id/eprint/71700