Title data
Hochgesang, Adrian ; Erhardt, Andreas ; Mohanraj, John ; Kuhn, Meike ; Herzig, Eva M. ; Olthof, Selina ; Thelakkat, Mukundan:
Highly Efficient n-Doping via Proton Abstraction of an Acceptor₁-Acceptor₂ Alternating Copolymer toward Thermoelectric Applications.
In: Advanced Functional Materials.
Vol. 33
(2023)
Issue 30
.
- 2300614.
ISSN 1616-3028
DOI: https://doi.org/10.1002/adfm.202300614
Project information
Project title: |
Project's official title Project's id solar technologies go hybrid No information |
---|---|
Project financing: |
Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst |
Abstract in another language
Electron transporting (n-type) polymers are the coveted complementary counterpart to more thoroughly studied hole transporting (p-type) semiconducting polymers. Besides intrinsic stability issues of the doped form of n-type polymer toward ubiquitous oxidizing agents (H2O and O2), the choice of suitable n-dopants and underlying mechanism of doping is an open research field. Using a low LUMO, n-type unipolar acceptor1-acceptor2 copolymer poly(DPP-TPD) in conjunction with bulk n-doping using Cs2CO3 these issues can be addressed. A solid-state acid-base interaction between polymer and basic carbonate increases the backbone electron density by deprotonation of the thiophene comonomer while forming bicarbonate, as revealed by NMR and optical spectroscopy. Comparable to N-DMBI hydride/electron transfer, Cs2CO3 proton abstraction doping shifts the poly(DPP-TPD) work function toward the LUMO. Thereby, the anionic doped state is resilient against O2 but is susceptible toward H2O. Based on GIWAXS, Cs2CO3 is mostly incorporated into the amorphous regions of poly(DPP-TPD) with the help of hydrophilic side chains and has minor impact on the short-range order of the polymer. Cs2CO3 proton abstraction doping and the acceptor1-acceptor2 copolymer architecture creates a synergistic n-doped system with promising properties for thermoelectric energy conversion, as evidenced by a remarkable power factor of (5.59 ± 0.39) × µW m−1 K−2.
Further data
Item Type: | Article in a journal |
---|---|
Refereed: | Yes |
Keywords: | conductive polymers; doping; double acceptor polymers; n-type; proton abstraction |
Institutions of the University: | Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Juniorprofessor Experimental Physics VII - Dynamics and Structure Formation Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Juniorprofessor Experimental Physics VII - Dynamics and Structure Formation > Juniorprofessor Experimental Physics VII - Dynamics and Structure Formation - Juniorprof. Dr. Eva M. Herzig Faculties Faculties > Faculty of Mathematics, Physics und Computer Science |
Result of work at the UBT: | Yes |
DDC Subjects: | 500 Science > 530 Physics |
Date Deposited: | 28 Apr 2023 05:15 |
Last Modified: | 26 Oct 2023 09:11 |
URI: | https://eref.uni-bayreuth.de/id/eprint/76113 |