Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren

RAMANMETRIX : a delightful way to analyze Raman spectra

Title data

Storozhuk, Darina ; Ryabchykov, Oleg ; Popp, Jürgen ; Bocklitz, Thomas:
RAMANMETRIX : a delightful way to analyze Raman spectra.
arXiv , 2022

Abstract in another language

Although Raman spectroscopy is widely used for the investigation of biomedical samples and has a high potential for use in clinical applications, it is not common in clinical routines. One of the factors that obstruct the integration of Raman spectroscopic tools into clinical routines is the complexity of the data processing workflow. Software tools that simplify spectroscopic data handling may facilitate such integration by familiarizing clinical experts with the advantages of Raman spectroscopy.
Here, RAMANMETRIX is introduced as a user-friendly software with an intuitive web-based graphical user interface (GUI) that incorporates a complete workflow for chemometric analysis of Raman spectra, from raw data pretreatment to a robust validation of machine learning models. The software can be used both for model training and for the application of the pretrained models onto new data sets. Users have full control of the parameters during model training, but the testing data flow is frozen and does not require additional user input. RAMANMETRIX is available in two versions: as standalone software and web application. Due to the modern software architecture, the computational backend part can be executed separately from the GUI and accessed through an application programming interface (API) for applying a preconstructed model to the measured data. This opens up possibilities for using the software as a data processing backend for the measurement devices in real-time.
The models preconstructed by more experienced users can be exported and reused for easy one-click data preprocessing and prediction, which requires minimal interaction between the user and the software. The results of such prediction and graphical outputs of the different data processing steps can be exported and saved.

Further data

Item Type: Preprint, postprint
Keywords: Data Analysis; Statistics and Probability (; Applications (stat.AP); Machine Learning (stat.ML)
Institutions of the University: Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Computer Science > Lehrstuhl Künstliche Intelligenz in der Mikroskopie und Spektroskopie > Lehrstuhl Künstliche Intelligenz in der Mikroskopie und Spektroskopie - Univ.-Prof. Dr. Thomas Wilhelm Bocklitz
Result of work at the UBT: No
DDC Subjects: 000 Computer Science, information, general works > 004 Computer science
500 Science > 530 Physics
Date Deposited: 11 May 2023 07:10
Last Modified: 11 May 2023 07:10