Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Reorganization energies of flexible organic molecules as a challenging target for machine learning enhanced virtual screening

Title data

Chen, Ke ; Kunkel, Christian ; Reuter, Karsten ; Margraf, Johannes T.:
Reorganization energies of flexible organic molecules as a challenging target for machine learning enhanced virtual screening.
In: Digital Discovery. Vol. 1 (2022) Issue 2 . - pp. 147-157.
ISSN 2635-098X
DOI: https://doi.org/10.1039/D1DD00038A

Abstract in another language

The molecular reorganization energy λ strongly influences the charge carrier mobility of organic semiconductors and is therefore an important target for molecular design. Machine learning (ML) models generally have the potential to strongly accelerate this design process (e.g. in virtual screening studies) by providing fast and accurate estimates of molecular properties. While such models are well established for simple properties (e.g. the atomization energy), λ poses a significant challenge in this context. In this paper, we address the questions of how ML models for λ can be improved and what their benefit is in high-throughput virtual screening (HTVS) studies. We find that, while improved predictive accuracy can be obtained relative to a semiempirical baseline model, the improvement in molecular discovery is somewhat marginal. In particular, the ML enhanced screenings are more effective in identifying promising candidates but lead to a less diverse sample. We further use substructure analysis to derive a general design rule for organic molecules with low λ from the HTVS results.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Künstliche Intelligenz in der physiko-chemischen Materialanalytik
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Künstliche Intelligenz in der physiko-chemischen Materialanalytik > Chair Künstliche Intelligenz in der physiko-chemischen Materialanalytik - Univ.-Prof. Dr. Johannes Theo Margraf
Result of work at the UBT: No
DDC Subjects: 500 Science > 540 Chemistry
Date Deposited: 13 Nov 2023 13:59
Last Modified: 13 Nov 2023 13:59
URI: https://eref.uni-bayreuth.de/id/eprint/87654