Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Imaging Proton Transport in Giant Vesicles through Cyclic Peptide–Polymer Conjugate Nanotube Transmembrane Ion Channels

Title data

Binfield, Jason G. ; Brendel, Johannes C. ; Cameron, Neil R. ; Eissa, Ahmed M. ; Perrier, Sébastien:
Imaging Proton Transport in Giant Vesicles through Cyclic Peptide–Polymer Conjugate Nanotube Transmembrane Ion Channels.
In: Macromolecular Rapid Communications. Vol. 39 (2018) Issue 19 . - 1700831.
ISSN 1521-3927
DOI: https://doi.org/10.1002/marc.201700831

Abstract in another language

Since their discovery in 1993, interest in various aspects of cyclic peptides (CPs) has expanded rapidly. Of particular note is their potential to form artificial ion channels in lipid membranes, an attractive characteristic in supramolecular chemistry and biological research. The design and synthesis of cyclic peptide–polymer conjugates (CPPCs) that can self-assemble within lipid bilayers into nanotubes, mimicking naturally occurring membrane channels and pores, has been reported. However, methods that allow direct detection of the transport process with high levels of certainty are still lacking. This work focuses on the development of a simple but reliable approach to verify and quantify proton transport across a bilayer membrane. Giant unilamellar vesicles (GUVs) are created via the electroformation method and CPPCs are incorporated in GUV membranes at varying concentrations (0–10%). Confocal fluorescence microscopy is used to demonstrate full inclusion of fluorescein-labeled CPPCs in the GUV membranes. The pH-sensitive dye carboxyfluorescein is encapsulated within the water pool of the GUVs and used as an indicator of proton transport. This assay is versatile and can be exploited on other existing proton transporter systems, providing a consistent tool to compare their performances. It should also aid the development of novel antineoplastics and drug delivery systems.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Macromolecular Chemistry I
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Macromolecular Chemistry I > Chair Macromolecular Chemistry I - Univ.-Prof. Dr. Johannes C. Brendel
Result of work at the UBT: No
DDC Subjects: 500 Science > 540 Chemistry
Date Deposited: 21 Feb 2024 08:06
Last Modified: 02 May 2024 07:39
URI: https://eref.uni-bayreuth.de/id/eprint/88567