Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Latitudinal patterns in stabilizing density dependence of forest communities

Title data

Hülsmann, Lisa ; Chisholm, Ryan A. ; Comita, Liza ; Visser, Marco D. ; de Souza Leite, Melina ; Aguilar, Salomon ; Anderson-Teixeira, Kristina J. ; Bourg, Norman A. ; Brockelman, Warren Y. ; Bunyavejchewin, Sarayudh ; Castaño, Nicolas ; Chang-Yang, Chia-Hao ; Chuyong, George B. ; Clay, Keith ; Davies, Stuart J. ; Duque, Alvaro ; Ediriweera, Sisira ; Ewango, Corneille ; Gilbert, Gregory S. ; Holík, Jan ; Howe, Robert W. ; Hubbell, Stephen P. ; Itoh, Akira ; Johnson, Daniel J. ; Kenfack, David ; Král, Kamil ; Larson, Andrew J. ; Lutz, James A. ; Makana, Jean-Remy ; Malhi, Yadvinder ; McMahon, Sean M. ; McShea, William J. ; Mohamad, Mohizah ; Nasardin, Musalmah ; Nathalang, Anuttara ; Norden, Natalia ; Oliveira, Alexandre A. ; Parmigiani, Renan ; Perez, Rolando ; Phillips, Richard P. ; Pongpattananurak, Nantachai ; Sun, I-Fang ; Swanson, Mark E. ; Tan, Sylvester ; Thomas, Duncan ; Thompson, Jill ; Uriarte, Maria ; Wolf, Amy T. ; Yao, Tze Leong ; Zimmerman, Jess K. ; Zuleta, Daniel ; Hartig, Florian:
Latitudinal patterns in stabilizing density dependence of forest communities.
In: Nature. (28 February 2024) .
ISSN 1476-4687
DOI: https://doi.org/10.1038/s41586-024-07118-4

Official URL: Volltext

Abstract in another language

Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10–12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Junior Professor Ecosystem Analysis and Simulation
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Junior Professor Ecosystem Analysis and Simulation > Junior Professor Ecosystem Analysis and Simulation - Juniorprof. Dr. Lisa Hülsmann
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 550 Earth sciences, geology
500 Science > 570 Life sciences, biology
500 Science > 580 Plants (Botany)
Date Deposited: 05 Mar 2024 08:44
Last Modified: 05 Mar 2024 08:44
URI: https://eref.uni-bayreuth.de/id/eprint/88766