Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Red-light-mediated copper-catalyzed photoredox catalysis promotes regioselectivity switch in the difunctionalization of alkenes

Title data

Zhang, Tong ; Rabeah, Jabor ; Das, Shoubhik:
Red-light-mediated copper-catalyzed photoredox catalysis promotes regioselectivity switch in the difunctionalization of alkenes.
In: Nature Communications. Vol. 15 (2024) . - 5208.
ISSN 2041-1723
DOI: https://doi.org/10.1038/s41467-024-49514-4

Abstract in another language

Controlling regioselectivity during difunctionalization of alkenes remains a significant challenge, particularly when the installation of both functional groups involves radical processes. In this aspect, methodologies to install trifluoromethane (−CF3) via difunctionalization have been explored, due to the importance of this moiety in the pharmaceutical sectors; however, these existing reports are limited, most of which affording only the corresponding β-trifluoromethylated products. The main reason for this limitation arises from the fact that −CF3 group served as an initiator in those reactions and predominantly preferred to be installed at the terminal (β) position of an alkene. On the contrary, functionalization of the −CF3 group at the internal (α) position of alkenes would provide valuable products, but a meticulous approach is necessary to win this regioselectivity switch. Intrigued by this challenge, we here develop an efficient and regioselective strategy where the −CF3 group is installed at the α-position of an alkene. Molecular complexity is achieved via the simultaneous insertion of a sulfonyl fragment (−SO2R) at the β-position. A precisely regulated sequence of radical generation using red light-mediated photocatalysis facilitates this regioselective switch from the terminal (β) position to the internal (α) position. Furthermore, this approach demonstrates broad substrate scope and industrial potential for the synthesis of pharmaceuticals under mild reaction conditions.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Organic Chemistry I - Photo- und Elektrokatalyse für Nachhaltigkeit > Chair Organic Chemistry I - Photo- und Elektrokatalyse für Nachhaltigkeit - Univ.-Prof. Dr. Das Shoubhik
Result of work at the UBT: No
DDC Subjects: 500 Science > 540 Chemistry
Date Deposited: 24 Jun 2024 11:20
Last Modified: 24 Jun 2024 11:20
URI: https://eref.uni-bayreuth.de/id/eprint/89820