Title data
Zhu, Jian ; Mulder, Thijs ; Rokicińska, Anna ; Lindenbeck, Lucie M. ; Van den Hoek, Järi ; Havenith, Remco W. A. ; Cunha, Ana V. ; Kuśtrowski, Piotr ; Slabon, Adam ; Das, Shoubhik ; Cool, Pegie:
Synergistic Interaction between the Ni-Center and Glycine-Derived N-Doped Porous Carbon Material Boosts Electrochemical CO₂ Reduction.
In: ACS Catalysis.
Vol. 14
(2024)
Issue 14
.
- pp. 10987-10997.
ISSN 2155-5435
DOI: https://doi.org/10.1021/acscatal.4c00881
Abstract in another language
Electrochemical conversion of CO2 into CO is highly attractive since CO is highly valuable for its wide use in organic synthesis as well as a fuel-type molecule. However, the selective formation of CO from CO2 is highly sensitive to the variation of particle size, coordination number, and defects in the electrocatalyst. Considering this, we report a boosted electrochemical CO2 reduction performance on a Ni, N-codoped hierarchical porous carbon material (Ni@MicroPNC) by exposing substantial active sites during the carbonization process by using ZnCl2 as the porous template agent due to its relatively low boiling point. A particular advantage of our electrocatalyst is that the support (N-doped hierarchical porous carbon material) of the Ni-catalyst is synthesized by using glycine as a carbon precursor. To our observation, the as-prepared Ni@MicroPNC catalyst displayed a high CO faradaic efficiency (FE) of 92.8% with a high partial current density (jco) of 22.4 mA cm–2 and outstanding current density stability at −0.81 V (vs RHE) for 10 h. The suggested high CO selectivity and catalytic stability of Ni@MicroPNC are attributed to the synergistic effect of high specific surface area, optimized hierarchical structure, Ni, N codoping into the porous carbon material, and relatively weaker CO binding strength. Furthermore, DFT calculations indicate that the doped N atom interacted with the Ni center to lower the energy barrier of *CO desorption. This finding provides a facile strategy for the synthesis of low-cost and highly active nanoparticle-based electrocatalysts for a selective reduction of CO2 into CO.
Further data
Item Type: | Article in a journal |
---|---|
Refereed: | Yes |
Institutions of the University: | Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Organic Chemistry I - Photo- und Elektrokatalyse für Nachhaltigkeit > Chair Organic Chemistry I - Photo- und Elektrokatalyse für Nachhaltigkeit - Univ.-Prof. Dr. Das Shoubhik |
Result of work at the UBT: | No |
DDC Subjects: | 500 Science > 540 Chemistry |
Date Deposited: | 24 Jul 2024 06:36 |
Last Modified: | 24 Jul 2024 06:36 |
URI: | https://eref.uni-bayreuth.de/id/eprint/90029 |