Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Pasture degradation modifies the water and carbon cycles of the Tibetan highlands

Title data

Babel, Wolfgang ; Biermann, Tobias ; Coners, Heinz ; Falge, Eva ; Seeber, Elke ; Ingrisch, Johannes ; Schleuss, Per-Marten ; Gerken, Tobias ; Leonbacher, Jürgen ; Leipold, Thomas ; Willinghöfer, Sandra ; Schützenmeister, K. ; Shibistova, Olga ; Becker, Lena ; Hafner, Silke ; Spielvogel, Sandra ; Li, Xiaogang ; Xu, Xingliang ; Sun, Yue ; Zhang, Lang ; Yang, Yongping ; Ma, Yaoming ; Wesche, Karsten ; Graf, Hans-F. ; Leuschner, Christoph ; Guggenberger, Georg ; Kuzyakov, Yakov ; Miehe, Georg ; Foken, Thomas:
Pasture degradation modifies the water and carbon cycles of the Tibetan highlands.
In: Biogeosciences. Vol. 11 (2014) Issue 23 . - pp. 6633-6656.
ISSN 1726-4189
DOI: https://doi.org/10.5194/bg-11-6633-2014

Abstract in another language

The Tibetan Plateau has a significant role with regard to atmospheric circulation and the monsoon in particular. Changes between a closed plant cover and open bare soil are one of the striking effects of land use degradation observed with unsustainable range management or climate change, but experiments investigating changes of surface properties and processes together with atmospheric feedbacks are rare and have not been undertaken in the world’s two largest alpine ecosystems, the alpine steppe and the Kobresia pygmaea pastures of the Tibetan plateau.We connected measurements of micro-lysimeter, chamber, 13C labelling, and eddy-covariance and combined the observations with land surface and atmospheric models, adapted to the highland conditions. This allowed us to analyze how three degradation stages affect the water and carbon cycle of pastures on the landscape scale within the core region of the Kobresia pygmaea ecosystem. The study revealed that increasing degradation of the Kobresia turf affects carbon allocation and strongly reduces the carbon uptake, compromising the function of Kobresia pastures as a carbon sink. Pasture degradation leads to a shift from transpiration to evaporation while a change in the sum of evapotranspiration over a longer period cannot be confirmed. The results show an earlier onset of convection and cloud generation, likely triggered by a shift in evapotranspiration timing when dominated by evaporation. Consequently, precipitation starts earlier and clouds decrease the incoming solar radiation. In summary, the changes in surface properties by pasture degradation found on the highland have a significant influence on larger scales.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER125842
BAYCEER138935
Institutions of the University: Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Soil Ecology
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Professorship Micrometeorology
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Professorship Micrometeorology > Professorship Micrometeorology - Univ.-Prof. Dr. Christoph K. Thomas
Research Institutions
Research Institutions > Research Centres
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 24 Apr 2015 11:55
Last Modified: 28 Mar 2019 03:48
URI: https://eref.uni-bayreuth.de/id/eprint/11317