Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Donor-Acceptor Block Copolymers with Nanoscale Morphology for Photovoltaic applications

Title data

Sommer, Michael ; Hüttner, Sven ; Thelakkat, Mukundan:
Donor-Acceptor Block Copolymers with Nanoscale Morphology for Photovoltaic applications.
In: Müller, Axel H. E. ; Altstädt, Volker (ed.): Complex macromolecular systems II. - Berlin , 2010 . - pp. 123-153 . - (Advances in Polymer Science ; 228 )
ISBN 9783642129117
DOI: https://doi.org/10.1007/12_2009_34

Project information

Project financing: Deutsche Forschungsgemeinschaft

Abstract in another language

Extensive research activities in synthesis and device engineering have been devoted to the development of donor-acceptor (D-A) bulk heterojunction solar cells in the last few years. Several photophysical processes occur in such devices which have to be optimized for an efficient device operation. First, excitons that are created upon light absorption need to reach the D/A interface within their short exciton diffusion length (10-20 nm), where they may dissociate into holes and electrons. Subsequent charge transport and charge collection can then take place at the electrodes, given that co-continuous pathways of donor and acceptor domains are provided. An active layer thickness of 100-200 nm is required to absorb most of the light, and vertically aligned pathways with a high aspect ratio of either phase should percolate through the film, taking into account the small exciton diffusion lengths. The morphologies resulting from this ideal situation resemble those of vertically oriented microphase separated block copolymer thin films, and hence suggest the exploitation of D-A block copolymers for organic photovoltaics. Furthermore, complex block copolymer architectures are not only desired in order to improve the morphological control but also to enhance the long term stability of the device. The potential of such block copolymers to microphase separate into well-defined structures several tens of nanometers in size thus addresses the morphological requirements mentioned above. This chapter gives an overview of the emerging field of D-A block copolymers. General synthetic efforts that have been undertaken towards this direction are summarized. The D-A block copolymers prepared in our group are reviewed and complemented with recent work on crystalline-crystalline block copolymers.

Further data

Item Type: Article in a book
Refereed: Yes
Institutions of the University: Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Macromolecular Chemistry I
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Junior Professorship Solar Energy > Junior Professorship Solar Energy - Juniorprof. Dr. Sven Hüttner
Profile Fields
Profile Fields > Advanced Fields
Profile Fields > Advanced Fields > Polymer and Colloid Science
Profile Fields > Emerging Fields
Profile Fields > Emerging Fields > Energy Research and Energy Technology
Research Institutions
Research Institutions > Collaborative Research Centers, Research Unit
Research Institutions > Collaborative Research Centers, Research Unit > SFB 481 Komplexe Makromolekül- und Hybridsysteme in inneren und äußeren Feldern
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Junior Professorship Solar Energy
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Professorship Applied Functional Polymers > Professorship Applied Functional Polymers - Univ.-Prof. Dr. Mukundan Thelakkat
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Professorship Applied Functional Polymers
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 540 Chemistry
Date Deposited: 14 Apr 2016 06:55
Last Modified: 21 Jul 2016 08:24
URI: https://eref.uni-bayreuth.de/id/eprint/1264