Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Belowground in situ redox dynamics and methanogenesis recovery in a degraded fen during dry-wet cycles and flooding

Title data

Estop Aragonés, Cristian ; Knorr, Klaus-Holger ; Blodau, Christian:
Belowground in situ redox dynamics and methanogenesis recovery in a degraded fen during dry-wet cycles and flooding.
In: Biogeosciences. Vol. 10 (2013) . - pp. 421-436.
ISSN 1726-4189
DOI: https://doi.org/10.5194/bg-10-421-2013

Abstract in another language

Climate change induced drying and flooding may alter the redox conditions of organic matter decomposition in peat soils. The seasonal and intermittent changes in pore water solutes (NO3−, Fe2+, SO42−, H2S, acetate) and dissolved soil gases (CO2, O2, CH4, H2) under natural water table fluctuations were compared to the response under a reinforced drying and flooding in fen peats. Oxygen penetration during dryings led to CO2 and CH4 degassing and to a regeneration of dissolved electron acceptors (NO3−, Fe3+ and SO42−). Drying intensity controlled the extent of the electron acceptor regeneration. Iron was rapidly reduced and sulfate pools ~ 1 mmol L−1 depleted upon rewetting and CH4 did not substantially accumulate until sulfate levels declined to ~ 100 μmoll−1. The post-rewetting recovery of soil methane concentrations to levels ~ 80 μmoll−1 needed 40–50 days after natural drought. This recovery was prolonged after experimentally reinforced drought. A greater regeneration of electron acceptors during drying was not related to prolonged methanogenesis suppression after rewetting. Peat compaction, solid phase content of reactive iron and total reduced inorganic sulfur and organic matter content controlled oxygen penetration, the regeneration of electron acceptors and the recovery of CH4 production, respectively. Methane production was maintained despite moderate water table decline of 20 cm in denser peats. Flooding led to accumulation of acetate and H2, promoted CH4 production and strengthened the co-occurrence of iron and sulfate reduction and methanogenesis. Mass balances during drying and flooding indicated that an important fraction of the electron flow must have been used for the generation and consumption of electron acceptors in the solid phase or other mechanisms. In contrast to flooding, dry-wet cycles negatively affect methane production on a seasonal scale but this impact might strongly depend on drying intensity and on the peat matrix, whose structure and physical properties influence moisture content.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER109647
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Hydrology
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Hydrology > Chair Hydrology - Univ.-Prof. Dr. Stefan Peiffer
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Research Institutions > Research Units > Limnological Research Station
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences
Research Institutions
Research Institutions > Research Centres
Research Institutions > Research Units
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 12 May 2015 06:11
Last Modified: 09 Jun 2015 13:37
URI: https://eref.uni-bayreuth.de/id/eprint/13338