Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Nicotianamine forms complexes with Zn(II) in vivo

Title data

Trampczynska, Aleksandra ; Küpper, Hendrik ; Meyer-Klaucke, Wolfram ; Schmidt, Holger ; Clemens, Stephan:
Nicotianamine forms complexes with Zn(II) in vivo.
In: Metallomics. Vol. 2 (2010) Issue 1 . - pp. 57-66.
ISSN 1756-591X
DOI: https://doi.org/10.1039/b913299f

Abstract in another language

The non-proteinogenic amino acid nicotianamine (NA) is a major player in plant metal homeostasis. It is known to form complexes with different transition metals in vitro. Available evidence associates NA with translocation of Fe, and possibly other micronutrients, to and between different plant cells and tissues. To date, however, it is still extremely challenging to detect metal-ligand complexes in vivo because tissue disruption immediately changes the chemical environment and thereby the availability of binding partners. In order to overcome this limitation we used various Schizosaccharomyces pombe strains expressing a plant NAS gene to study formation of metal-NA complexes in vivo. Tolerance, accumulation and competition data clearly indicated formation of Zn(II)-NA but not of Cu(II)-NA complexes. Zn(II)-NA was then identified by X-ray absorption spectroscopy (XAS). About half of the cellular Zn was found to be bound by NA in NAS-expressing cells while no NA-like ligands were detected by XAS in control cells not expressing NAS. Given the high conservation of eukaryotic metal homeostasis components, these results strongly suggest the possible existence of Zn(II)-NA complexes also in planta. Reported observations implicating NA in plant Zn homeostasis would then indeed be attributable to direct interaction of Zn(II) with NA rather than only indirectly to perturbations in Fe metabolism. Re-evaluation of extended X-ray absorption fine structure (EXAFS) spectra for the Zn hyperaccumulator Thlaspi caerulescens showed that NA is as expected not a major storage ligand for Zn. Instead it is hypothesized to be involved in efficient translocation of Zn to above-ground tissues in hyperaccumulators.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER77468
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology > Chair Plant Physiology
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology > Chair Plant Physiology > Chair Plant Physiology - Univ.-Prof. Dr. Stephan Clemens
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 18 Jun 2015 06:35
Last Modified: 18 Jun 2015 06:35
URI: https://eref.uni-bayreuth.de/id/eprint/15166