Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Characterizing the redox status in three different forested wetlands with geochemical data

Title data

Alewell, Christine ; Paul, Sonja ; Lischeid, Gunnar ; Küsel, Kirsten ; Gehre, Matthias:
Characterizing the redox status in three different forested wetlands with geochemical data.
In: Environmental Science & Technology. Vol. 40 (2006) Issue 24 . - pp. 7609-7615.
ISSN 0013-936X
DOI: https://doi.org/10.1021/es061018y

Abstract in another language

Biogeochemistry and regulation of redox processes in wetlands and especially their source sink functions regarding sulfur, nitrogen, iron, and alkalinity are still poorly understood and become increasingly important in a world of global change. We investigated three forested wetlands within the Lehstenbach catchment (Fichtelgebirge, Northeastern Bavaria, Germany) differing in their degree of water saturation, vegetation, and availability of iron with stable sulfur analysis as well as geochemical analysis (iron, nitrate, sulfate, and oxygen contents in soil solutions and groundwater). Results indicated considerable nitrate, sulfate, and iron reduction rates bound to high spatial and temporal heterogeneity at all three sites. Sites differed significantly regarding their oxygen saturation and their dynamics of sulfur and iron reduction. The sequential reduction chain did not seem an applicable concept to describe redox dynamics at micro- (cm2) or mesoscale (m2) because of (1) high small-scale heterogeneity and (2) an absence of clear relationships between redox indicative parameters. The latter might be caused by redox processes occurring simultaneously at the investigated spatial and temporal scales. However, a tendency toward exclusive relationships between oxygen and iron, nitrate and iron, and δ34S with oxygen, nitrate, and sulfate indicated that the sequential reduction chain might be a suitable modeling concept for macroscale (km2) investigations with large sample numbers.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER42792
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Ecological Modelling
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Soil Ecology
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 06 Jul 2015 10:25
Last Modified: 06 Jul 2015 10:25
URI: https://eref.uni-bayreuth.de/id/eprint/15967