Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Temperature sensitivity of C and N mineralization in temperate forest soils at low temperatures

Title data

Schütt, Marianne ; Borken, Werner ; Spott, Oliver ; Stange, Claus Florian ; Matzner, Egbert:
Temperature sensitivity of C and N mineralization in temperate forest soils at low temperatures.
In: Soil Biology & Biochemistry. Vol. 69 (2014) . - pp. 320-327.
ISSN 0038-0717
DOI: https://doi.org/10.1016/j.soilbio.2013.11.014

Abstract in another language

Climate models predict warmer winter in temperate regions, but little is known about the temperature sensitivity of soil carbon (C) and nitrogen (N) mineralization at low temperatures. Here, we assess thetemperature sensitivities of gross ammonification, gross nitrification, C and net N mineralization of top soil horizons, under a European beech and a Norway spruce temperate forest. We tested the hypothesesthat (1) substrate quality affects the temperature sensitivity of C and N mineralization and (2) thattemperature sensitivity of C mineralization is higher than of gross ammonification. Soil incubations were conducted at constant temperatures of 4, 1, þ2, þ5 and þ8 C. Gross ammonification and nitrification were measured by the 15N pool dilution technique. Temperature sensitivities of C, gross and net N mineralization were calculated using the Arrhenius equation and C mineralization was taken as proxy for substrate quality.Gross ammonification and C mineralization was much larger in the beech than in the spruce soil, while gross nitrification was in the same order of magnitude. Gross ammonification, nitrification and Cmineralization almost ceased at 4 C, but already increased at 1 C. Net ammonification in Oi/Oehorizons was low at 4 and 1 C and increased strongly between þ2 and þ8 C. Net nitrification waslow in both soils, but increased in the spruce soil at temperatures >2 C whereas no temperatureresponse occurred in the beech soil.Apparent Q10 values of gross ammonification and C mineralization in the temperature range of 4 to þ8 C were in the range of 3e18. Q10 were lowest in soil horizons of low substrate quality. The ratio of C mineralization to gross ammonification varied between 0.5 and 2.9, suggesting preferential mineralization of N rich organic substrates or rapid turnover of the N pool in microbial biomass. Rising wintertemperatures might have substantial effects on net N mineralization, but effects decrease with soil depth, likely due to decreasing substrate quality of soil organic matter.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER116541
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Soil Ecology
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Former Professors > Chair Soil Ecology - Univ.-Prof. Dr. Egbert Matzner
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 07 Aug 2015 06:59
Last Modified: 07 Aug 2015 06:59
URI: https://eref.uni-bayreuth.de/id/eprint/17639