Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Methane and nitrous oxide fluxes of soils in pure and mixed stand of European beech and Norway spruce

Title data

Borken, Werner ; Beese, Friedrich:
Methane and nitrous oxide fluxes of soils in pure and mixed stand of European beech and Norway spruce.
In: European Journal of Soil Science. Vol. 57 (2006) Issue 5 . - pp. 617-625.
ISSN 1351-0754
DOI: https://doi.org/10.1111/j.1365-2389.2005.00752.x

Abstract in another language

Tree species can affect the sink and source strength of soils for atmospheric methane and nitrous oxide. Here we report soil methane (CH4) and nitrous oxide (N2O) fluxes of adjacent pure and mixed stands of beech and spruce at Solling, Germany. Mean CH4 uptake rates ranged between 18 and 48 µg C m-2 hour-1 during 2.5 years and were about twice as great in both mixed and the pure beech stand as in the pure spruce stand. CH4 uptake was negatively correlated with the dry mass of the O horizon, suggesting that this diminishes the transport of atmospheric CH4 into the mineral soil. Mean N2O emission was rather small, ranging between 6 and 16 µg N m-2 hour-1 in all stands. Forest type had a significant effect on N2O emission only in one mixed stand during the growing season. We removed the O horizon in additional plots to study its effect on gas fluxes over 1.5 years, but N2O emissions were not altered by this treatment. Surprisingly, CH4 uptake decreased in both mixed and the pure beech stands following the removal of the O horizon. The decrease in CH4 uptake coincided with an increase in the soil moisture content of the mineral soil. Hence, O horizons may maintain the gas diffusivity within the mineral soil by storing water which cannot penetrate into the mineral soil after rainfall. Our results indicate that conversion of beech forests to beech-spruce and pure spruce forests could decrease soil CH4 uptake, while the long-term effect on N2O emissions is expected to be rather small.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER27532
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Soil Ecology
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 11 Sep 2015 06:33
Last Modified: 11 Sep 2015 06:33
URI: https://eref.uni-bayreuth.de/id/eprint/19158