Titlebar

Bibliografische Daten exportieren
Literatur vom gleichen Autor
plus auf ERef Bayreuth
plus bei Google Scholar

 

Comparative simulation of the nitrogen dynamics using the INCA model and a neural network analysis: implications for improved nitrogen modelling

Titelangaben

Lischeid, Gunnar ; Langusch, Jens:
Comparative simulation of the nitrogen dynamics using the INCA model and a neural network analysis: implications for improved nitrogen modelling.
In: Hydrology and Earth System Sciences. Bd. 8 (2004) . - S. 742-750.
ISSN 1607-7938
DOI: https://doi.org/10.5194/hess-8-742-2004

Abstract

Abstract: Continuing deposition of nitrogen in forested catchments affects stream and groundwater quality. However, the dependence of nitrogen dynamics on climatic and hydrological boundary conditions is still poorly understood. These dynamics have been investigated by applying the process-oriented Integrated Nitrogen in CAtchments (INCA) model and an artificial neural network to the data set from the forested Steinkreuz catchment in South Germany. The data comprise daily values of precipitation, air temperature and discharge of the catchment runoff. The INCA model simulated the mean nitrate concentration in the stream as well as seasonal fluctuations but it underestimated the short-term variance of the observed stream water nitrate concentration, especially the pronounced concentration peaks in late summer. In contrast, the artificial neural network matched the short-term dynamics using non-linear regressions with stream discharge and air temperature data. The results provide strong evidence that the short-term dynamics of stream nitrate concentration during storm-flow were generated in the riparian zone, which is less than 1% of the catchment area, and is not considered explicitly in the INCA model. The concentration peaks have little effect on the catchment’s nitrogen budget and the shallow groundwater data suggest that the short-term hydrological dynamics also govern groundwater recharge in the upland parts of the catchment. This substantial underestimate by the INCA model parameterisation is balanced by a corresponding underestimate of denitrification in clayey layers of the deeper aquifer. A better understanding of these processes is necessary to improve long-term risk assessments.Keywords: catchment, runoff, nitrogen, INCA, artificial neural network, flushing

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Zusätzliche Informationen: BAYCEER20741
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften > Lehrstuhl Ökologische Modellbildung
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften > Lehrstuhl Bodenökologie
Forschungseinrichtungen > Forschungszentren > Bayreuther Zentrum für Ökologie und Umweltforschung - BayCEER
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften
Fakultäten
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Forschungseinrichtungen
Forschungseinrichtungen > Forschungszentren
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik
Eingestellt am: 30 Sep 2015 05:55
Letzte Änderung: 30 Sep 2015 05:55
URI: https://eref.uni-bayreuth.de/id/eprint/19850