Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Thermal and Catalytic Decomposition of Formic Acid for Synthesis Gas Production in Liquid Phase

Titelangaben

Glowienka, Kevin ; Duerksen, Alexander ; Kern, Christoph ; Jess, Andreas:
Thermal and Catalytic Decomposition of Formic Acid for Synthesis Gas Production in Liquid Phase.
In: Ernst, Stefan , German Society for Petroleum and Coal Science and Technology (Hrsg.): Preprints of the DGMK-Conference "Synthesis Gas Chemistry", October 7-9, 2015, Dresden, Germany : (authors manuscripts). - Hamburg : Deutsche wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e.V. , 2015 . - S. 217-224 . - (Tagungsbericht / Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle ; 2015,2 )
ISBN 978-3-941721-56-2

Abstract

Formic acid (FA) is known to decompose either to H2 and CO2 or to CO and H2O; hence, FA can be regarded as a source for both hydrogen and carbon monoxide. This aspect offers a novel concept for second generation biofuels by using formic acid as an intermediate in synthesis gas production since with polyoxometalate catalyst, FA forms in high purity from waste biomass. Furthermore, the acid decomposes under very mild conditions. Thus, combining formic acid decomposition with electrolysis from renewable energy leads to neat synthesis gas as feed in Fischer-Tropsch synthesis. Within our research, the focus is on the formic acid decomposition, in particular on CO formation. For this purpose, two different setups are used: a plug flow reactor for gas phase and a semi-batch autoclave for liquid phase
formic acid decomposition. In gas phase decomposition, a high selectivity (> 99 %) can be achieved into both reaction pathways depending on the catalyst. Here, supported gold catalysts, e.g. Au/TiO2, yield H2, whereas an acidic zeolite leads to CO formation. In the liquid
phase, the same Au/TiO2 catalyst also makes hydrogen, but the product gas contains CO as well because FA decomposes thermally to CO and water under the reaction conditions.
However, the thermal decomposition rate of formic acid depends significantly on the acidity of the system and, thus, on the water content of the substrate. Kinetic modelling of the thermal decomposition leads to a first order reaction with respect to the proton activity that
was approximated using Hammett’s acidity function. The kinetic model has been confirmed by increasing the acidity by adding sulphuric acid to the feed; no change in selectivity was observed for FA conversion, and an activation energy of 139 kJ mol-1 was determined for
thermal decomposition.

Weitere Angaben

Publikationsform: Aufsatz in einem Buch
Begutachteter Beitrag: Nein
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Chemische Verfahrenstechnik
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Chemische Verfahrenstechnik > Lehrstuhl Chemische Verfahrenstechnik - Univ.-Prof. Dr.-Ing. Andreas Jess
Fakultäten
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 660 Chemische Verfahrenstechnik
Eingestellt am: 15 Okt 2015 07:10
Letzte Änderung: 25 Okt 2017 09:23
URI: https://eref.uni-bayreuth.de/id/eprint/20443