Titlebar

Bibliografische Daten exportieren
Literatur vom gleichen Autor
plus auf ERef Bayreuth
plus bei Google Scholar

 

Thermal and Catalytic Decomposition of Formic Acid for Synthesis Gas Production in Liquid Phase

Titelangaben

Glowienka, Kevin ; Kern, Christoph ; Jess, Andreas:
Thermal and Catalytic Decomposition of Formic Acid for Synthesis Gas Production in Liquid Phase.
2015
Veranstaltung: DGMK Conference Synthesis Gas Chemistry , 07.-09.10.2015 , Dresden, Deutschland.
(Veranstaltungsbeitrag: Kongress/Konferenz/Symposium/Tagung , Poster )

Abstract

Formic acid (FA) is known to decompose either to H₂ and CO₂ or to CO and H₂O; hence, FA can be regarded as a source for both hydrogen and carbon monoxide. This aspect offers a novel concept for second generation biofuels by using formic acid as an intermediate in synthesis gas production since with polyoxometalate catalyst, FA forms in high purity from waste biomass. Furthermore, the acid decomposes under very mild conditions. Thus, combining formic acid decomposition with electrolysis from renewable energy leads to neat synthesis gas as feed in Fischer-Tropsch synthesis. Within our research, the focus is on the formic acid decomposition, in particular on CO formation. For this purpose, two different setups are used: a plug flow reactor for gas phase and a semi-batch autoclave for liquid phase formic acid decomposition. In gas phase decomposition, a high selectivity (> 99 %) can be achieved into both reaction pathways depending on the catalyst. Here, supported gold catalysts, e.g. Au/TiO₂, yield H₂, whereas an acidic zeolite leads to CO formation. In the liquid phase, the same Au/TiO₂ catalyst also makes hydrogen, but the product gas contains CO as well because FA decomposes thermally to CO and water under the reaction conditions.
However, the thermal decomposition rate of formic acid depends significantly on the acidity of the system and, thus, on the water content of the substrate. Kinetic modelling of the thermal decomposition leads to a first order reaction with respect to the proton activity that was approximated using Hammett’s acidity function. The kinetic model has been confirmed by increasing the acidity by adding sulphuric acid to the feed; no change in selectivity was observed for FA conversion, and an activation energy of 139 kJ mol-1 was determined for thermal decomposition.

Weitere Angaben

Publikationsform: Veranstaltungsbeitrag (Poster)
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Chemische Verfahrenstechnik
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Chemische Verfahrenstechnik > Lehrstuhl Chemische Verfahrenstechnik - Univ.-Prof. Dr.-Ing. Andreas Jess
Fakultäten
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 660 Chemische Verfahrenstechnik
Eingestellt am: 11 Feb 2016 08:43
Letzte Änderung: 11 Feb 2016 08:43
URI: https://eref.uni-bayreuth.de/id/eprint/30609